Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Let a=(134)\mathbf{a} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}a=134, b=(811)\mathbf{b} = \begin{pmatrix} 8 \\ 1 \\ 1 \end{pmatrix}b=811 and c=(010)\mathbf{c} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}c=010.
Find the vector equation of the line passing through the points PPP and QQQ, where P=a+bP = \mathbf{a} + \mathbf{b}P=a+b and Q=c−2aQ = \mathbf{c} - 2\mathbf{a}Q=c−2a.
Let a=(134)\mathbf{a} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}a=134 and b=(811)\mathbf{b} = \begin{pmatrix} 8 \\ 1 \\ 1 \end{pmatrix}b=811. Find the vector equation of the line passing through points PPP and QQQ, where the position vector of PPP is 2a−b2\mathbf{a} - \mathbf{b}2a−b and the position vector of QQQ is a+2b\mathbf{a} + 2\mathbf{b}a+2b.
Let a=(1,3,4)\mathbf{a}=(1,3,4)a=(1,3,4), b=(8,1,1)\mathbf{b}=(8,1,1)b=(8,1,1) and c=(0,1,0)\mathbf{c}=(0,1,0)c=(0,1,0). Find the vector equation of the plane containing the points P=a+bP=\mathbf{a}+\mathbf{b}P=a+b, Q=c−2aQ=\mathbf{c}-2\mathbf{a}Q=c−2a and R=a+2b+2cR=\mathbf{a}+2\mathbf{b}+2\mathbf{c}R=a+2b+2c.
Find the vector equation of the plane through the point PPP with position vector p=2a−b+c\mathbf{p} = 2\mathbf{a} - \mathbf{b} + \mathbf{c}p=2a−b+c and parallel to both u=b+a\mathbf{u} = \mathbf{b} + \mathbf{a}u=b+a and v=c−a\mathbf{v} = \mathbf{c} - \mathbf{a}v=c−a.
Let a=(134)\mathbf{a}=\begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}a=134, b=(811)\mathbf{b}=\begin{pmatrix} 8 \\ 1 \\ 1 \end{pmatrix}b=811 and c=(010)\mathbf{c}=\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}c=010. Find the vector equation of the plane through P=a+b−cP=\mathbf{a}+\mathbf{b}-\mathbf{c}P=a+b−c, Q=2a+3bQ=2\mathbf{a}+3\mathbf{b}Q=2a+3b and R=4cR=4\mathbf{c}R=4c.
Find the vector equation of the line passing through the point PPP with position vector p=c−a\mathbf{p} = \mathbf{c} - \mathbf{a}p=c−a and parallel to the vector v=b+c\mathbf{v} = \mathbf{b} + \mathbf{c}v=b+c.
Let a=(134)\mathbf{a}=\begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}a=134, b=(811)\mathbf{b}=\begin{pmatrix} 8 \\ 1 \\ 1 \end{pmatrix}b=811 and c=(010)\mathbf{c}=\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}c=010.
Find the vector equation of the line passing through the point PPP with position vector p=a+2b\mathbf{p} = \mathbf{a} + 2\mathbf{b}p=a+2b, parallel to the vector v=c−3b+a\mathbf{v} = \mathbf{c} - 3\mathbf{b} + \mathbf{a}v=c−3b+a.
Consider the points A(1,3,4)A(1, 3, 4)A(1,3,4), B(8,1,1)B(8, 1, 1)B(8,1,1) and C(0,1,0)C(0, 1, 0)C(0,1,0).
Find the vector equation of the line passing through AAA and BBB.
Find the vector equation of the line passing through the point PPP, with position vector OP⃗=a+2c\vec{OP} = \mathbf{a}+2\mathbf{c}OP=a+2c, and parallel to the vector v=b−3c\mathbf{v} = \mathbf{b}-3\mathbf{c}v=b−3c.
Let a=(134)\mathbf{a}=\begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}a=134, b=(811)\mathbf{b}=\begin{pmatrix} 8 \\ 1 \\ 1 \end{pmatrix}b=811 and c=(010)\mathbf{c}=\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}c=010. Find a vector equation of the plane passing through the points PPP, QQQ and RRR, defined by P=2a−bP=2\mathbf{a}-\mathbf{b}P=2a−b, Q=3b+cQ=3\mathbf{b}+\mathbf{c}Q=3b+c and R=4c−aR=4\mathbf{c}-\mathbf{a}R=4c−a.
Consider the points A(1,3,4)A(1, 3, 4)A(1,3,4), B(8,1,1)B(8, 1, 1)B(8,1,1) and C(0,1,0)C(0, 1, 0)C(0,1,0). Find the vector equation of the plane passing through AAA, BBB and CCC.
Find a vector equation of the plane passing through points PPP, QQQ and RRR defined by the position vectors: OP⃗=a−2b+c,OQ⃗=3a+b−c,OR⃗=2b+2c−a\vec{OP}=\mathbf{a}-2\mathbf{b}+\mathbf{c}, \quad \vec{OQ}=3\mathbf{a}+\mathbf{b}-\mathbf{c}, \quad \vec{OR}=2\mathbf{b}+2\mathbf{c}-\mathbf{a}OP=a−2b+c,OQ=3a+b−c,OR=2b+2c−a
Previous
Question Type 1: Using three points to write vector equation of a plane
Next
Question Type 3: Finding equation of a plane given the normal and a point