Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Express z=3eiπ/3z = 3e^{i\pi/3}z=3eiπ/3 in polar form r cis(θ)r\ \text{cis}(\theta)r cis(θ).
Express z=5e−iπ/6z = 5e^{-i\pi/6}z=5e−iπ/6 in polar form r cis(θ)r \ \text{cis}(\theta)r cis(θ).
Express z=4eiπ/4z = 4e^{i\pi/4}z=4eiπ/4 in polar form r cis(θ)r\ \text{cis}(\theta)r cis(θ).
Express z=eiπz = e^{i\pi}z=eiπ in polar form r cisθr\ \text{cis}\thetar cisθ.
Convert z=3 cisπ3z = 3\ \text{cis} \frac{\pi}{3}z=3 cis3π to Cartesian form x+iyx + iyx+iy.
Convert z=5 cis(π)z = 5\ \text{cis}( \pi)z=5 cis(π) to Cartesian form x+iyx + iyx+iy.
Express z=9ei5π/4z = 9e^{i5\pi/4}z=9ei5π/4 in polar form r cis(θ)r\ \text{cis}(\theta)r cis(θ).
Express z=22 ei3π/4z = 2\sqrt{2}\,e^{i3\pi/4}z=22ei3π/4 in polar form r cis(θ)r\ \text{cis} (\theta)r cis(θ).
Express z=10ei3π/2z = 10e^{i3\pi/2}z=10ei3π/2 in polar form r cisθr\ \text{cis}\thetar cisθ.
Express z=7e−i2π/3z = 7e^{-i2\pi/3}z=7e−i2π/3 in polar form r cis(θ)r\ \text{cis}(\theta)r cis(θ).
Convert z=4 cis(π4)z = 4\ \text{cis}( \frac{\pi}{4})z=4 cis(4π) to Cartesian form x+iyx + iyx+iy.
Convert z=6 cis(−π6)z = 6\ \text{cis} (-\frac{\pi}{6})z=6 cis(−6π) to Cartesian form x+iyx + iyx+iy.
Convert z=7 cis(−2π3)z = 7\ \text{cis} (-\frac{2\pi}{3})z=7 cis(−32π) to Cartesian form x+iyx + iyx+iy.
Convert z=10 cis3π2z = 10\ \text{cis} \frac{3\pi}{2}z=10 cis23π to Cartesian form x+iyx + iyx+iy.
Convert z=8 cis5π4z = 8\ \text{cis} \frac{5\pi}{4}z=8 cis45π to Cartesian form x+iyx + iyx+iy.
Convert z=22 cis(3π4)z = 2\sqrt{2}\ \text{cis}( \frac{3\pi}{4})z=22 cis(43π) to Cartesian form x+iyx + iyx+iy.
Previous
Question Type 1: Converting from Cartesian to Euler and Polar
Next
Question Type 3: Adding and subtracting complex numbers in Cartesian form