Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Convert z=6 cis(−π6)z = 6\ \text{cis} \left(-\frac{\pi}{6}\right)z=6 cis(−6π) to Cartesian form x+iyx + iyx+iy.
Express z=9ei5π/4z = 9e^{i5\pi/4}z=9ei5π/4 in polar form r cis(θ)r\ \text{cis}(\theta)r cis(θ).
Convert z=7 cis(−2π3)z = 7\ \text{cis} \left(-\frac{2\pi}{3}\right)z=7 cis(−32π) to Cartesian form x+iyx + iyx+iy.
Express z=22ei3π4z = 2\sqrt{2}e^{i\frac{3\pi}{4}}z=22ei43π in polar form rcis(θ)r \text{cis}(\theta)rcis(θ).
Convert z=8 cis5π4z = 8 \, \text{cis} \frac{5\pi}{4}z=8cis45π to Cartesian form x+iyx + iyx+iy.
Convert z=10cis3π2z = 10 \text{cis} \frac{3\pi}{2}z=10cis23π to Cartesian form x+iyx + iyx+iy.
Express z=10ei3π2z = 10e^{i\frac{3\pi}{2}}z=10ei23π in polar form r cisθr\ \text{cis}\thetar cisθ.
Convert z=3 cisπ3z = 3 \, \text{cis} \frac{\pi}{3}z=3cis3π to Cartesian form x+iyx + iyx+iy.
Express z=eiπz = e^{i\pi}z=eiπ in polar form r cis θr \text{ cis } \thetar cis θ.
Express z=3eiπ3z = 3e^{\frac{i\pi}{3}}z=3e3iπ in polar form rcis(θ)r \text{cis}(\theta)rcis(θ).
Express z=4eiπ4z = 4e^{i\frac{\pi}{4}}z=4ei4π in polar form r cis(θ)r\,\text{cis}(\theta)rcis(θ).
Convert z=22 cis(3π4)z = 2\sqrt{2}\ \text{cis}\left( \frac{3\pi}{4} \right)z=22 cis(43π) to Cartesian form x+iyx + iyx+iy.
Express z=5e−iπ6z = 5e^{-i\frac{\pi}{6}}z=5e−i6π in polar form r cis(θ)r \, \text{cis}(\theta)rcis(θ).
Express z=7e−i2π3z = 7e^{-i\frac{2\pi}{3}}z=7e−i32π in polar form rcis(θ)r \text{cis}(\theta)rcis(θ).
Convert z=4cis(π4)z = 4 \text{cis}\left( \frac{\pi}{4} \right)z=4cis(4π) to Cartesian form x+iyx + iyx+iy.
Convert z=5cis(π)z = 5 \text{cis}(\pi)z=5cis(π) to Cartesian form x+iyx + iyx+iy.
Previous
Question Type 1: Converting from Cartesian to Euler and Polar
Next
Question Type 3: Adding and subtracting complex numbers in Cartesian form