Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Determine the point of intersection of the line (x,y,z)=(2,3,4)+t(−1,0,2)(x,y,z)=(2,3,4)+t(-1,0,2)(x,y,z)=(2,3,4)+t(−1,0,2) with the plane 4x−y+z=104x-y+z=104x−y+z=10.
Determine the point where the line (x,y,z)=(−3,2,1)+t(7,−5,4)(x,y,z)=(-3,2,1)+t(7,-5,4)(x,y,z)=(−3,2,1)+t(7,−5,4) intersects the plane 3x−y+2z=83x-y+2z=83x−y+2z=8.
Find the intersection of the line (x,y,z)=(2,0,−1)+t(0,5,2)(x,y,z)=(2,0,-1)+t(0,5,2)(x,y,z)=(2,0,−1)+t(0,5,2) with the plane 2x−3y+z=42x-3y+z=42x−3y+z=4.
Find the coordinates of the point where the line (x,y,z)=(5,−2,1)+t(3,1,−4)(x,y,z)=(5,-2,1)+t(3,1,-4)(x,y,z)=(5,−2,1)+t(3,1,−4) meets the plane 6x+2y−3z=76x+2y-3z=76x+2y−3z=7.
Compute the intersection of the line (x,y,z)=(1,0,3)+t(−2,2,1)(x,y,z)=(1,0,3)+t(-2,2,1)(x,y,z)=(1,0,3)+t(−2,2,1) with the plane 5x+y−2z=95x+y-2z=95x+y−2z=9.
Find the point of intersection of the line (x,y,z)=(0,1,−2)+t(3,−2,4)(x,y,z)=(0,1,-2)+t(3,-2,4)(x,y,z)=(0,1,−2)+t(3,−2,4) with the plane x−4y+2z=5x-4y+2z=5x−4y+2z=5.
Find the point of intersection of the line given by (xyz)=(321)+t(141)\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} + t \begin{pmatrix} 1 \\ 4 \\ 1 \end{pmatrix}xyz=321+t141 with the plane 2x+6y+z=12x+6y+z=12x+6y+z=1.
Find the coordinates of the point of intersection of the line r=(1−12)+t(213)\mathbf{r} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} + t \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}r=1−12+t213 with the plane x+2y−3z=4x+2y-3z=4x+2y−3z=4.
Find the coordinates of the intersection of the line with equation r=t(12−1)\mathbf{r} = t \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}r=t12−1 and the plane with equation 3x−y+2z=53x - y + 2z = 53x−y+2z=5.
Where does the line (xyz)=(111)+t(111)\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + t\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}xyz=111+t111 intersect the plane x+y+z=6x+y+z=6x+y+z=6?
Determine where the line (x,y,z)=(−2,3,5)+t(4,−1,−2)(x,y,z)=(-2,3,5)+t(4,-1,-2)(x,y,z)=(−2,3,5)+t(4,−1,−2) meets the plane −x+2y+3z=1-x+2y+3z=1−x+2y+3z=1.
Compute the intersection of the line (x,y,z)=(−1,4,3)+t(2,−3,1)(x,y,z)=(-1,4,3)+t(2,-3,1)(x,y,z)=(−1,4,3)+t(2,−3,1) with the plane x−y+4z=2x-y+4z=2x−y+4z=2.
Previous
No previous topic
Next
Question Type 2: Finding the intersection of two planes