Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Evaluate (cosπ12+isinπ12)24\big(\cos \tfrac{\pi}{12} + i\sin \tfrac{\pi}{12}\big)^{24}(cos12π+isin12π)24.
If z=cosπ5+isinπ5z=\cos\tfrac{\pi}{5}+i\sin\tfrac{\pi}{5}z=cos5π+isin5π, compute Re(z10)\text{Re}(z^{10})Re(z10).
Evaluate (1+i32)9\Big(\tfrac{1+i\sqrt{3}}{2}\Big)^9(21+i3)9.
Evaluate (1−i)12(1-i)^{12}(1−i)12 in the form a+bia+bia+bi.
Find the least positive integer nnn such that Im[(cosπ9+isinπ9)n]=0\text{Im}\big[\big(\cos \tfrac{\pi}{9}+i\sin \tfrac{\pi}{9}\big)^n\big]=0Im[(cos9π+isin9π)n]=0.
Let z=2−2iz=2-2iz=2−2i. Compute z8z^8z8 in the form a+bia+bia+bi.
Let z=2(cos2π7+isin2π7)z = 2\big(\cos \tfrac{2\pi}{7} + i\sin \tfrac{2\pi}{7}\big)z=2(cos72π+isin72π). Find z5z^5z5 in the form r(cosθ+isinθ)r(\cos\theta + i\sin\theta)r(cosθ+isinθ) with 0≤θ<2π0\le \theta<2\pi0≤θ<2π.
Evaluate [3(cos5π6+isin5π6)]4\big[3(\cos \tfrac{5\pi}{6} + i\sin \tfrac{5\pi}{6})\big]^4[3(cos65π+isin65π)]4 in the form a+bia+bia+bi.
Given z=8(cos3π4+isin3π4)z=8\big(\cos \tfrac{3\pi}{4} + i\sin \tfrac{3\pi}{4}\big)z=8(cos43π+isin43π), compute z3z^3z3 in the form a+bia+bia+bi.
Evaluate [5(cos π9+i sin π9)]3[5( \text{cos }\tfrac{\pi}{9} + i\,\text{sin }\tfrac{\pi}{9})]^3[5(cos 9π+isin 9π)]3 in the form a+bia+bia+bi.
Compute (3+i)6(\sqrt{3}+i)^6(3+i)6 in the form a+bia+bia+bi.
Compute (2+2i)5(3−i)4\dfrac{(2+2i)^{5}}{(\sqrt{3}-i)^{4}}(3−i)4(2+2i)5 in the form a+bia+bia+bi.
Previous
No previous topic
Next
Question Type 2: Finding the roots of complex numbers