Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Solve sin(x+π4)=cos(π4)\sin\left(x+\frac{\pi}{4}\right)=\cos\left(\frac{\pi}{4}\right)sin(x+4π)=cos(4π) for x∈[0,2π)x\in[0,2\pi)x∈[0,2π).
Find all xxx in (−2π,2π)(-2\pi,2\pi)(−2π,2π) for which cot(x)=0\cot(x)=0cot(x)=0.
Determine all xxx in [0,2π)[0, 2\pi)[0,2π) such that sin(x)=sin(5π/6)\sin(x)=\sin(5\pi/6)sin(x)=sin(5π/6).
Solve sin(2x)=sin(π/3)\sin(2x)=\sin(\pi/3)sin(2x)=sin(π/3) for x∈(−2π,2π)x\in(-2\pi,2\pi)x∈(−2π,2π).
Find the principal value of arccos(−3/2)\arccos(-\sqrt{3}/2)arccos(−3/2) and list all solutions to cos(x)=−3/2\cos(x)=-\sqrt{3}/2cos(x)=−3/2 in (−2π,2π)(-2\pi,2\pi)(−2π,2π).
Solve csc(x)=2\csc(x)=2csc(x)=2 for xxx in (−2π,2π)(-2\pi, 2\pi)(−2π,2π).
Find all x∈(−2π,2π)x \in (-2\pi, 2\pi)x∈(−2π,2π) such that cos(x)=−12\cos(x) = -\frac{1}{2}cos(x)=−21.
Solve sec(x)=2\sec(x)=\sqrt{2}sec(x)=2 for x∈(−2π,2π)x\in(-2\pi,2\pi)x∈(−2π,2π).
Find all xxx in (−π,π](-\pi,\pi](−π,π] satisfying tan(x)=tan(−π/4)\tan(x)=\tan(-\pi/4)tan(x)=tan(−π/4).
Find all values of xxx in (−2π,2π)(-2\pi, 2\pi)(−2π,2π) such that cos(x)=cos(π6)\cos(x)=\cos\left(\frac{\pi}{6}\right)cos(x)=cos(6π).
Find all xxx in (−2π,2π)(-2\pi, 2\pi)(−2π,2π) such that sin(x)=cos(π3)\sin(x) = \cos\left(\frac{\pi}{3}\right)sin(x)=cos(3π).
Determine all xxx in (−2π,2π)(-2\pi, 2\pi)(−2π,2π) satisfying tan(x)=−3\tan(x) = -\sqrt{3}tan(x)=−3.
Previous
No previous topic
Next
Question Type 2: Given an equation of a line, finding the angle of elevation