Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Evaluate ∫csc(5x)cot(5x) dx\displaystyle \int \csc(5x)\cot(5x)\,dx∫csc(5x)cot(5x)dx.
Find ∫sec(7x)tan(7x) dx\displaystyle \int \sec(7x)\tan(7x)\,dx∫sec(7x)tan(7x)dx.
Compute the indefinite integral: ∫sec(3x)tan(3x) dx\displaystyle \int \sec(3x)\tan(3x)\,dx∫sec(3x)tan(3x)dx
Find ∫4sec(2x)tan(2x) dx\displaystyle \int 4\sec(2x)\tan(2x)\,dx∫4sec(2x)tan(2x)dx.
Evaluate ∫−3csc(6x)cot(6x) dx\displaystyle \int -3\csc(6x)\cot(6x)\,dx∫−3csc(6x)cot(6x)dx.
Compute ∫5sec(4x)tan(4x) dx\displaystyle \int 5\sec(4x)\tan(4x)\,dx∫5sec(4x)tan(4x)dx.
Calculate ∫−6csc(3x)cot(3x) dx\displaystyle \int -6\csc(3x)\cot(3x)\,dx∫−6csc(3x)cot(3x)dx.
Calculate ∫[sec(5x)tan(5x)−csc(5x)cot(5x)] dx\displaystyle \int\bigl[\sec(5x)\tan(5x)-\csc(5x)\cot(5x)\bigr]\,dx∫[sec(5x)tan(5x)−csc(5x)cot(5x)]dx.
Evaluate ∫[sec(2x)tan(2x)+csc(2x)cot(2x)] dx\displaystyle \int\bigl[\sec(2x)\tan(2x)+\csc(2x)\cot(2x)\bigr]\,dx∫[sec(2x)tan(2x)+csc(2x)cot(2x)]dx.
Evaluate ∫[6sec(2x)tan(2x)−3csc(2x)cot(2x)] dx\displaystyle \int\bigl[6\sec(2x)\tan(2x)-3\csc(2x)\cot(2x)\bigr]\,dx∫[6sec(2x)tan(2x)−3csc(2x)cot(2x)]dx.
Compute ∫exsec(ex)tan(ex) dx\displaystyle \int e^{x}\sec(e^{x})\tan(e^{x})\,dx∫exsec(ex)tan(ex)dx.
Calculate ∫sec(lnx)tan(lnx)1x dx\displaystyle \int \sec(\ln x)\tan(\ln x)\frac{1}{x}\,dx∫sec(lnx)tan(lnx)x1dx.
Find ∫sec(sinx)tan(sinx)cosx dx\displaystyle \int \sec(\sin x)\tan(\sin x)\cos x\,dx∫sec(sinx)tan(sinx)cosxdx.
Evaluate ∫−csc(sinx)cot(sinx)cosx dx\displaystyle \int -\csc(\sin x)\cot(\sin x)\cos x\,dx∫−csc(sinx)cot(sinx)cosxdx.
Compute ∫sec(5x3)tan(5x3) 15x2 dx\displaystyle \int\sec(5x^{3})\tan(5x^{3})\,15x^{2}\,dx∫sec(5x3)tan(5x3)15x2dx.
Evaluate ∫−csc(3x2)cot(3x2) 6x dx\displaystyle \int -\csc(3x^{2})\cot(3x^{2})\,6x\,dx∫−csc(3x2)cot(3x2)6xdx.
Previous
Question Type 1: The derivatives of simple composite functions of the reciprocal trigonometric functions
Next
Question Type 3: The derivatives of simple composites of inverse trigonometric functions