Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Find the absolute maximum and minimum values of the function f(x)=x2f(x)=x^2f(x)=x2 on the interval [−1,2][-1,2][−1,2].
Find the absolute maximum and minimum of f(x)=sin(2x)f(x)=\sin(2x)f(x)=sin(2x) on the interval [0,π][0,\pi][0,π].
Find the absolute extrema of f(x)=sinxf(x)= \sin xf(x)=sinx on the closed interval [0,π][0,\pi][0,π].
Determine the absolute maximum and minimum of f(x)=x3−3x2+1f(x)=x^3-3x^2+1f(x)=x3−3x2+1 on the interval [−1,3][-1,3][−1,3].
Determine the absolute extrema of f(x)=ex(2−x)f(x)=e^x(2-x)f(x)=ex(2−x) on [0,3][0,3][0,3].
Find the absolute maximum and minimum of the function f(x)=xe−xf(x)=x e^{-x}f(x)=xe−x on the interval [0,4][0,4][0,4].
Find the absolute maximum and minimum values of the function f(x)=x1+x2f(x)=\frac{x}{1+x^2}f(x)=1+x2x on the interval [0,3][0,3][0,3].
Find the absolute maximum and minimum values of f(x)=e−x2f(x)=e^{-x^2}f(x)=e−x2 on the interval [−2,2][-2,2][−2,2].
On the interval [0,π2][0,\tfrac{\pi}{2}][0,2π], find the maximum and minimum values of the function f(x)=sinxexf(x)=\dfrac{\sin x}{e^x}f(x)=exsinx
Determine the absolute extrema of f(x)=lnxxf(x)=\frac{\ln x}{x}f(x)=xlnx on the interval [1,e][1,e][1,e].
On [0,3][0,3][0,3], find the absolute extrema of the function f(x)=x2e−x.f(x)=x^2 e^{-x}.f(x)=x2e−x.
On the interval [0,3][0,3][0,3], find the absolute maximum and minimum of the function $$ f(x)=x^4-4x^3+10.
Previous
Question Type 3: Related rates with geometric constraints
Next
No next topic