The Relationship Between $ \Delta G^\circ $ and $ K $
Standard Gibbs Free Energy Change ($ \Delta G^\circ $) and Its Significance
- As discussed in Reactivity 1.4, the Gibbs free energy change ($ \Delta G $) is a thermodynamic quantity that determines whether a reaction is spontaneous.
- A spontaneous reaction proceeds without requiring external energy input.
- $ \Delta G< 0 $: The reaction is spontaneous in the forward direction.
- $ \Delta G >0 $: The reaction is non-spontaneous in the forward direction (but spontaneous in reverse).
- $ \Delta G = 0 $:The system is at equilibrium.
When we discuss $ \Delta G^\circ $, we refer to the Gibbs free energy change under standard conditions: 1 atm pressure for gases, 1 $mol \, dm^{-3}$ concentration for solutions, and a specified temperature (usually 298 K unless otherwise stated).
But how does $ \Delta G^\circ $ relate to the equilibrium constant ($ K $)?
The Equation Relating $ \Delta G^\circ $ and $ K $
- The connection between $ \Delta G^\circ $ and $ K $ is expressed mathematically as: $$
\Delta G^\circ = -RT \ln K
$$ where:- $ \Delta G^\circ $: Standard Gibbs free energy change (in $\text{J mol}^{-1}$).
- $ R $: Gas constant ($ 8.31 \, \mathrm{J \, mol^{-1} \, K^{-1}} $).
- $ T $: Absolute temperature in Kelvin.
- $ K $: Equilibrium constant (unitless).
- This equation links thermodynamics ($ \Delta G^\circ $) to equilibrium ($ K $) and provides critical insights into reaction behavior:
- When $ \Delta G^\circ < 0 $:
- The reaction is product-favored.
- $ K > 1 $, indicating that the equilibrium lies toward the products.
- When $ \Delta G^\circ > 0 $:
- The reaction is reactant-favored.
- $ K < 1 $, indicating that the equilibrium lies toward the reactants.
- When $ \Delta G^\circ = 0 $:
- The system is at equilibrium.
- $ K = 1 $, meaning that reactants and products are present in comparable amounts.
Interpreting $ \Delta G^\circ $ and $ K $
$ \Delta G^\circ < 0 $ (Spontaneous Forward Reaction)
- Suppose a reaction has $ \Delta G^\circ = -25 \, \text{kJ mol}^{-1} $ at 298 K.
- The negative value indicates that the forward reaction is spontanous under standard conditions.
- Using the equation: $$
K = e^{-\frac{\Delta G^\circ }{ RT}}
$$ - Substitute the values:
- $ \Delta G^\circ = -25,000 \, \mathrm{J mol^{-1}} $
- $ R = 8.31 \, \mathrm{J mol^{-1} K^{-1}} $
- $ T = 298 \, \mathrm{K} $ $$
K = e^{-(-25,000) / (8.31 \times 298)}
$$ $$
K = e^{10.08} \approx 23000
$$
- Since $ K \gg 1 $, this equilibrium strongly favors the products.
$ \Delta G^\circ > 0 $ (Non-Spontaneous Forward Reaction)
- Now consider a reaction with $ \Delta G^\circ = +10 \, \mathrm{kJ mol^{-1}} $.
- Substituting into the equation: $$
K = e^{-10,000 / (8.31 \times 298)}
$$ $$
K = e^{-4.03} \approx 0.018
$$ - Here, $ K \ll 1 $, meaning the equilibrium strongly favors the reactants.
$ \Delta G^\circ = 0 $ (Equilibrium)
- If $ \Delta G^\circ = 0 $, then: $$
K = e^{0} = 1
$$ - This indicates that the concentrations of reactants and products are balanced at equilibrium, depending on their stoichiometric coefficients.
Calculate $ \Delta G^\circ $ for a reaction at 298 K if $ K = 50 $.
Solution
$$
\Delta G^\circ = -RT \ln K
$$
Substitute:
- $ R = 8.31 \, \mathrm{J mol^{-1} K^{-1}} $
- $ T = 298 \, \text{K} $
- $ K = 50 $
$$
\Delta G^\circ = -(8.31)(298) \ln(50)
$$
$$
\Delta G^\circ = -(8.31)(298)(3.91) \approx -9700 \, \mathrm{J mol^{-1}} \, (\text{or } -9.7 \, \mathrm{kJ mol^{-1}})
$$
Since $ \Delta G^\circ< 0 $, the reaction is spontaneous under standard conditions.
- Can you explain why a reaction with $ K< 1 $ is reactant-favored?
- How does this relate to $ \Delta G^\circ >0 $?


