Mathematics Is A Toolbox of Methods and Languages
- Medicine, climate science, economics, and even social sciences use mathematics to test ideas, spot patterns, and make predictions.
- This makes maths both powerful and problematic: powerful because it adds precision, problematic because its reliability depends on the assumptions, data, and ethics of how it is used.
Statistics As Proof of Effectiveness
- In medicine, statistical analysis is used to determine the effectiveness of treatments, identify risk factors for diseases, and make predictions about patient outcomes.
- For example, clinical trials rely on statistical methods to compare the outcomes of different treatment groups and determine whether a new drug is more effective than a placebo.
- Key Concepts:
- Randomized Controlled Trials (RCTs): These trials use randomization to eliminate bias and ensure that the results are statistically valid.
- P-values: A measure of the probability that the observed results occurred by chance. A low p-value (typically less than 0.05) indicates that the results are statistically significant.
- Confidence Intervals: These provide a range of values within which the true effect of a treatment is likely to lie.
Mathematics makes medical knowledge claims more trustworthy, but only if the trials are well-designed and the data is unbiased.
Climate Science Models The Unobservable
- Scientists use mathematics to create models, simulations of the climate system that let them test how the atmosphere, oceans, land, and ice interact over time.
- These models rely on physics expressed in equations that can’t capture every single variable, so scientists make simplifications and approximations.
- The strength of maths here is that even if we can’t experiment on the real Earth, we can experiment on a virtual one.
- When scientists predict sea-level rise, they are not making guesses.
- They are running millions of calculations, based on the laws of physics and historical climate records, to estimate the most likely scenarios.
- This ties to the core concept of uncertainty.
- Climate models are mathematically rigorous, but also vast simplifications.
- They can give us a strong picture of possible futures, but not exact certainty.
Ethical Considerations in Mathematical Modeling
- As mathematics becomes more embedded in daily decision-making from medicine to policing to finance ethical concerns move to the forefront.
- And while the equations themselves may seem neutral, the data they use and the way they’re applied reflect human choices and values.
- This is where ethics intersects with mathematics as an Area of Knowledge.
- Bias: Models inherit the flaws of their data. Predictive policing trained on crime records often targets the same communities, reinforcing inequality.
- Transparency: Complex algorithms can act as “black boxes.” If a medical model denies treatment, neither patients nor doctors may know why, making accountability difficult.
- Consent: Patients must know when models guide their care. Without clear explanations of risks and uncertainties, consent is incomplete.
- How much should we trust knowledge claims that rely heavily on mathematical modeling?
- Does mathematical precision always make knowledge more reliable, or can it create a false sense of certainty?
- How can society balance the power of mathematical models with the need for fairness, transparency, and accountability?