Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Find the stationary point of f(x)=x2−8x+15f(x)=x^2-8x+15f(x)=x2−8x+15.
Find the stationary points of f(x)=x33+5x22+6x+10f(x)=\frac{x^3}{3}+\frac{5x^2}{2}+6x+10f(x)=3x3+25x2+6x+10.
Find all critical points of f(x)=3x3−6x2+9x−2f(x)=3x^3-6x^2+9x-2f(x)=3x3−6x2+9x−2.
Determine the stationary points of f(x)=−x3+4x2−x+1f(x)=-x^3+4x^2-x+1f(x)=−x3+4x2−x+1.
For f(x)=x3−3x2+2f(x)=x^3-3x^2+2f(x)=x3−3x2+2 determine whether each stationary point is a local minimum or maximum.
Find the critical points of f(x)=x3e−x2f(x)=x^3e^{-x^2}f(x)=x3e−x2.
Find the critical points of f(x)=x2exx2+1f(x)=\frac{x^2e^x}{x^2+1}f(x)=x2+1x2ex and approximate real solutions to two decimal places.
For the function f(x)=x3e−x2f(x)=x^3e^{-x^2}f(x)=x3e−x2 classify each critical point as local min, max or inflection.
Find the critical points of f(x)=x2exx−1f(x)=\frac{x^2e^x}{x-1}f(x)=x−1x2ex using technology, and give real solutions accurate to two decimal places.
Find the critical point(s) of f(x)=ex+x−ln(x)f(x)=e^x+x-\ln(x)f(x)=ex+x−ln(x) using technology and give your answer to three decimal places.
For f(x)=x2exx2+1f(x)=\frac{x^2e^x}{x^2+1}f(x)=x2+1x2ex determine whether each critical point is a local minimum or maximum using a sign chart or technology.
The function f(x)=ex+x−ln(x)f(x)=e^x+x-\ln(x)f(x)=ex+x−ln(x) has a single critical point at x≈0.402x\approx0.402x≈0.402. Determine whether it is a local min or max.
Previous
No previous topic
Next
Question Type 2: Finding the FOC for functions using technology