Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Determine P(−1.5<X<0.5)P(-1.5 < X < 0.5)P(−1.5<X<0.5) when X∼N(0,1)X \sim N(0,1)X∼N(0,1).
Calculate P(X>12)P(X > 12)P(X>12) for X∼N(10,2)X \sim N(10,2)X∼N(10,2).
Calculate P(26<X<34)P(26 < X < 34)P(26<X<34) when X∼N(30,4)X \sim N(30,4)X∼N(30,4).
Find P(3<X<5)P(3 < X < 5)P(3<X<5) if X∼N(4.5,1.5)X \sim N(4.5,1.5)X∼N(4.5,1.5).
Find P(40<X<60)P(40 < X < 60)P(40<X<60) if X∼N(50,10)X \sim N(50,10)X∼N(50,10).
Find P(X<15)P(X < 15)P(X<15) for X∼N(20,5)X \sim N(20,5)X∼N(20,5).
Compute P(X>125)P(X > 125)P(X>125) for X∼N(100,15)X \sim N(100,15)X∼N(100,15).
Find P(X<3.6)P(X < 3.6)P(X<3.6) if X∼N(5,0.8)X \sim N(5,0.8)X∼N(5,0.8).
If X∼N(8,3)X \sim N(8,3)X∼N(8,3), determine bbb so that P(X<b)=0.90P(X < b) = 0.90P(X<b)=0.90.
For X∼N(8,3)X \sim N(8,3)X∼N(8,3), find aaa such that P(X>a)=0.75P(X > a) = 0.75P(X>a)=0.75.
Let X∼N(100,20)X \sim N(100,20)X∼N(100,20). Find ccc such that P(X>c)=0.05P(X > c) = 0.05P(X>c)=0.05.
For X∼N(0,2)X \sim N(0,2)X∼N(0,2), determine ddd so that P(−d<X<d)=0.80P(-d < X < d) = 0.80P(−d<X<d)=0.80.
Previous
Question Type 2: Finding the interval for which a specific percentage of data is concentrated
Next
Question Type 4: Finding the value of X using inverse normal