Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Calculate P(X>5)P(X > 5)P(X>5) for X∼N(2,4)X \sim N(2,4)X∼N(2,4).
Calculate P(X<1.96)P(X < 1.96)P(X<1.96) for X∼N(0,1)X \sim N(0,1)X∼N(0,1).
Calculate P(−1≤X≤2)P(-1 \le X \le 2)P(−1≤X≤2) for X∼N(0,9)X \sim N(0,9)X∼N(0,9).
Let X∼N(5,σ2)X \sim N(5,\sigma^2)X∼N(5,σ2) and 99% of the data lies between 3 and 7. Find σ\sigmaσ.
For X∼N(0,σ2)X \sim N(0,\sigma^2)X∼N(0,σ2), if 95% of the data lies between -3 and 3, find σ\sigmaσ.
For X∼N(3,16)X \sim N(3,16)X∼N(3,16), show that P(X<−1)=P(X>7)P(X < -1)=P(X > 7)P(X<−1)=P(X>7) and compute this probability.
Let X∼N(2,σ2)X \sim N(2,\sigma^2)X∼N(2,σ2) and P(X>a)=0.3P(X > a)=0.3P(X>a)=0.3. Express aaa in terms of σ\sigmaσ.
For X∼N(8,σ2)X \sim N(8,\sigma^2)X∼N(8,σ2), if 95% of the data lies between 6.5 and 9.5, find σ2\sigma^2σ2.
For X∼N(10,σ2)X \sim N(10,\sigma^2)X∼N(10,σ2), if the central 90% of data lies between 8 and 12, find σ\sigmaσ.
Let X∼N(2,σ2)X \sim N(2,\sigma^2)X∼N(2,σ2) and P(X>a)=0.3P(X > a)=0.3P(X>a)=0.3. Find 1−P(X<4−a)1 - P(X < 4 - a)1−P(X<4−a).
A test score X∼N(100,σ2)X \sim N(100,\sigma^2)X∼N(100,σ2). If 80% of students score between 90 and 110, find σ2\sigma^2σ2.
For X∼N(20,σ2)X \sim N(20,\sigma^2)X∼N(20,σ2), the interval [10,30] contains 95% of the values. Find σ2\sigma^2σ2.
Previous
No previous topic
Next
Question Type 2: Finding the interval for which a specific percentage of data is concentrated