Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Multiply the complex numbers (2+3i)(2+3i)(2+3i) and (4−5i)(4-5i)(4−5i), and express the result in the form a+bia+bia+bi.
Find the product (1−2i)(3+4i)(1-2i)(3+4i)(1−2i)(3+4i) and write your answer in the form a+bia+bia+bi.
Calculate (4+3i)(5−6i)(4+3i)(5-6i)(4+3i)(5−6i) and express the result in the form a+bia+bia+bi.
Divide the complex numbers rac{3+2i}{1-i} and express the result in the form a+bia+bia+bi.
Find rac{5+5i}{2 - i} in the form a+bia+bia+bi.
Compute rac{4-7i}{2+3i} and express the answer as a+bia+bia+bi.
Find the complex number zzz such that z(1−2i)=5+5iz(1-2i)=5+5iz(1−2i)=5+5i, and express zzz in the form a+bia+bia+bi.
Simplify the power (1+i)3(1+i)^3(1+i)3 and express the result in the form a+bia+bia+bi.
Calculate the product (2−3i)(−1+4i)(3+i)(2-3i)(-1+4i)(3+i)(2−3i)(−1+4i)(3+i) and write your answer in the form a+bia+bia+bi.
Multiply (2+2i)(2+2i)(2+2i) by (1−3i)(1-3i)(1−3i) and represent the points for 2+2i2+2i2+2i, 1−3i1-3i1−3i, and the product on an Argand diagram.
Given z=7 cis(π3)z=7\,\text{cis}\left(\frac{\pi}{3}\right)z=7cis(3π) and w=2 cis(π4)w=2\,\text{cis}\left(\frac{\pi}{4}\right)w=2cis(4π), compute rac{z}{w} and express your answer in polar form.
Express the product (4+4i)(−4+4i)(4+4i)(-4+4i)(4+4i)(−4+4i) in polar form rigl( ext{cis } hetaigr), giving r>0r>0r>0 and 0leheta<2pi0\\le heta<2\\pi0leheta<2pi.
Previous
Question Type 5: Performing addition and subtraction on complex numbers
Next
Question Type 7: Determining the number of real roots for a given real quadratic