Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Differentiate the function f(x)=x3 sin(2x)f(x) = x^3\,\sin(2x)f(x)=x3sin(2x).
Compute f′(x)\displaystyle f'(x)f′(x) if f(x)=(3x2+1)5f(x) = (3x^2 + 1)^5f(x)=(3x2+1)5.
Find the derivative of f(x)=e3x cos(x2)f(x) = e^{3x}\,\cos(x^2)f(x)=e3xcos(x2).
Differentiate f(x)=sinxx2f(x) = \dfrac{\sin x}{x^2}f(x)=x2sinx.
Find ddx(ex1+ex)\dfrac{d}{dx}\Bigl(\dfrac{e^x}{1+e^x}\Bigr)dxd(1+exex).
Differentiate f(x)=x2 ln(x)f(x) = x^2\,\ln(x)f(x)=x2ln(x).
Compute the derivative of f(x)=sin(x) xf(x) = \sin(\sqrt{x})\,xf(x)=sin(x)x.
Differentiate f(x)=ln(x)xf(x) = \dfrac{\ln(x)}{x}f(x)=xln(x).
Find the derivative of f(x)=e−x ln(cosx)f(x) = e^{-x}\,\ln(\cos x)f(x)=e−xln(cosx).
Differentiate f(x)=exsinxx2f(x) = \dfrac{e^x\sin x}{x^2}f(x)=x2exsinx.
Compute ddx(cos(lnx)x)\dfrac{d}{dx}\Bigl(\dfrac{\cos(\ln x)}{x}\Bigr)dxd(xcos(lnx)).
Differentiate the composite function f(x)=cos(ln(x)) e−xxln(x).f(x)=\frac{\cos(\ln(x))\,e^{-x}}{x\ln(x)}.f(x)=xln(x)cos(ln(x))e−x.
Previous
Question Type 5: Applying quotient rule on functions as a rational
Next
Question Type 7: Finding the related rates between variable given contextual information on their relation