Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Find the inverse of B=(2005)B = \begin{pmatrix}2&0\\0&5\end{pmatrix}B=(2005).
Find the inverse of C=(1112)C = \begin{pmatrix}1&1\\1&2\end{pmatrix}C=(1112).
Find the inverse of A=(1234)A = \begin{pmatrix}1&2\\3&4\end{pmatrix}A=(1324).
Determine whether the inverse of L=(2412)L = \begin{pmatrix}2&4\\1&2\end{pmatrix}L=(2142) exists. If it does, find it.
Find the inverse of E=(−1234)E = \begin{pmatrix}-1&2\\3&4\end{pmatrix}E=(−1324).
Find the inverse of J=(01−23)J = \begin{pmatrix}0&1\\-2&3\end{pmatrix}J=(0−213).
Find the inverse of D=(3527)D = \begin{pmatrix}3&5\\2&7\end{pmatrix}D=(3257).
Find the inverse of H=(7253)H = \begin{pmatrix}7&2\\5&3\end{pmatrix}H=(7523).
Find the inverse of F=(4−32−5)F = \begin{pmatrix}4&-3\\2&-5\end{pmatrix}F=(42−3−5).
Find the inverse of M=(10152025)M = \begin{pmatrix}10&15\\20&25\end{pmatrix}M=(10201525).
Find the inverse of K=(5−1−42)K = \begin{pmatrix}5&-1\\-4&2\end{pmatrix}K=(5−4−12).
Find the inverse of G=(12131415)G = \begin{pmatrix}\frac{1}{2}&\frac{1}{3}\\\frac{1}{4}&\frac{1}{5}\end{pmatrix}G=(21413151).
Previous
Question Type 4: Finding the determinant for a 2x2 matrix
Next
Question Type 6: Using technology to find inverse and determinants for nxn matrices where n > 2