Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Write y=sin(2x+π6)y=\sin\bigl(2x+\tfrac{\pi}{6}\bigr)y=sin(2x+6π) in the form cos(2(x−c))\cos\bigl(2(x-c)\bigr)cos(2(x−c)) and determine ccc.
Express y=4sin(3x−π4)y=4\sin\bigl(3x-\tfrac{\pi}{4}\bigr)y=4sin(3x−4π) as cos(3(x−d))\cos\bigl(3(x-d)\bigr)cos(3(x−d)) and find ddd.
Rewrite y=5cos(2θ+π3)y=5\cos\bigl(2\theta+\tfrac{\pi}{3}\bigr)y=5cos(2θ+3π) in the form Asin(2(θ+e))A\sin\bigl(2(\theta+e)\bigr)Asin(2(θ+e)) and find AAA and eee.
Write y=2cos(4t−π)y=2\cos\bigl(4t-\pi\bigr)y=2cos(4t−π) in the form 2sin(4(t−f))2\sin\bigl(4(t-f)\bigr)2sin(4(t−f)) and find fff.
Convert y=sin(5x+9π)y=\sin\bigl(5x+9\pi\bigr)y=sin(5x+9π) into the form cos(5(x−c))\cos\bigl(5(x-c)\bigr)cos(5(x−c)) and give ccc in the interval 0≤c<2π0\le c<2\pi0≤c<2π.
Rewrite y=7cos(2ϕ+3π4)y=7\cos\bigl(2\phi+\tfrac{3\pi}{4}\bigr)y=7cos(2ϕ+43π) as sin(2(ϕ+h))\sin\bigl(2(\phi+h)\bigr)sin(2(ϕ+h)) and find hhh.
Express y=−5sin(3t−5π6)y=-5\sin\bigl(3t-\tfrac{5\pi}{6}\bigr)y=−5sin(3t−65π) as cos(3(t−g))\cos\bigl(3(t-g)\bigr)cos(3(t−g)) and determine ggg.
Express y=4cos(5x−7π3)y=4\cos\bigl(5x-\tfrac{7\pi}{3}\bigr)y=4cos(5x−37π) as sin(5(x+q))\sin\bigl(5(x+q)\bigr)sin(5(x+q)) and find qqq in [0,2π)[0,2\pi)[0,2π).
Rewrite y=3cos(2x+5π6)y=3\cos\bigl(2x+\tfrac{5\pi}{6}\bigr)y=3cos(2x+65π) in the form 3sin(2(x−c))3\sin\bigl(2(x-c)\bigr)3sin(2(x−c)) and determine ccc in [0,π)[0,\pi)[0,π).
Simplify y=sin(6x+17π3)y=\sin\bigl(6x+\tfrac{17\pi}{3}\bigr)y=sin(6x+317π) and express it as cos(6(x−i))\cos\bigl(6(x-i)\bigr)cos(6(x−i)). Find iii in [0,2π)[0,2\pi)[0,2π).
Derive the general formula for writing sin(ωx+α)\sin(\omega x+\alpha)sin(ωx+α) in the form cos(ω(x−c))\cos\bigl(\omega(x-c)\bigr)cos(ω(x−c)), expressing ccc in terms of α\alphaα and ω\omegaω.
Convert y=3sin(4x−7π3)y=3\sin\bigl(4x-\tfrac{7\pi}{3}\bigr)y=3sin(4x−37π) into the form cos(4(x−c))\cos\bigl(4(x-c)\bigr)cos(4(x−c)) and give the smallest positive ccc.
Previous
Question Type 3: Formulating sinusoidal models through descriptions
Next
Question Type 5: Determining parameter values based on information on the logistic model