Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Given the velocity function v(t)=5v(t) = 5v(t)=5 m/s for 0letle30 \\le t \\le 30letle3 s, find (a) the displacement and (b) the total distance traveled over this interval.
A particle moves with velocity v(t)=2tv(t)=2tv(t)=2t m/s for 0≤t≤40\le t\le 40≤t≤4 s. Calculate the displacement and the total distance traveled.
For 0≤t≤30\le t\le 30≤t≤3, a particle has velocity v(t)=t2−4v(t)=t^{2}-4v(t)=t2−4 m/s. Find the displacement and total distance traveled.
A particle has velocity
Find its displacement and total distance traveled for 0≤t≤50\le t\le50≤t≤5.
A particle has velocity v(t)=sintv(t)=\sin tv(t)=sint m/s for 0≤t≤π0\le t\le \pi0≤t≤π. Determine its displacement and total distance traveled.
Find the displacement and total distance for v(t)=3t2−12t+9v(t)=3t^{2}-12t+9v(t)=3t2−12t+9 m/s on 0≤t≤30\le t\le 30≤t≤3 s.
A particle moves with velocity v(t)=4cos(2t)v(t)=4\cos(2t)v(t)=4cos(2t) m/s for 0≤t≤π0\le t\le \pi0≤t≤π. Compute its displacement and total distance traveled.
Given v(t)=t3−6t2+9tv(t)=t^{3}-6t^{2}+9tv(t)=t3−6t2+9t m/s for 0≤t≤40\le t\le 40≤t≤4, find the displacement and the total distance traveled.
A particle moves with velocity v(t)=t2−8t+12v(t)=t^{2}-8t+12v(t)=t2−8t+12 m/s on 0≤t≤50\le t\le50≤t≤5. Find its displacement and total distance traveled.
For 0≤t≤20\le t\le20≤t≤2, velocity is v(t)=10e−t−2v(t)=10e^{-t}-2v(t)=10e−t−2 m/s. Compute the displacement and total distance traveled.
Determine the displacement and total distance traveled for v(t)=4cost−2v(t)=4\cos t -2v(t)=4cost−2 m/s over 0≤t≤π0\le t\le\pi0≤t≤π.
A particle travels with velocity v(t)=(t−3)2−4v(t)=(t-3)^{2}-4v(t)=(t−3)2−4 m/s over 0≤t≤60\le t\le60≤t≤6. Find its displacement and total distance traveled.
Previous
Question Type 3: Integrating kinematic variables
Next
No next topic