Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Using graphing software, determine whether (1,f(1))(1,f(1))(1,f(1)) is a local extremum for f(x)=x3−3x+2f(x)=x^3-3x+2f(x)=x3−3x+2, and classify this point.
Using a graphing tool, classify the extremum at x=−1x=-1x=−1 for f(x)=x3−3x+2f(x)=x^3-3x+2f(x)=x3−3x+2.
Using technology, determine and classify the extremum at x=1x=1x=1 for f(x)=1x+xf(x)=\frac{1}{x}+xf(x)=x1+x.
By inspecting the graph with technology, classify the extremum at x=12x=\tfrac{1}{\sqrt{2}}x=21 for the function f(x)=xe−x2f(x)=xe^{-x^2}f(x)=xe−x2.
Using a graphing calculator, determine if f(x)=xe−x2f(x)=xe^{-x^2}f(x)=xe−x2 has a local extremum at x=−12x=-\tfrac{1}{\sqrt{2}}x=−21 and classify it.
By inspection via technology, determine whether the point (e,f(e))(e, f(e))(e,f(e)) is a local extremum for f(x)=ln(x)xf(x)=\frac{\ln(x)}{x}f(x)=xln(x), and state its nature.
Using graphing technology, determine whether the point (2,f(2))(2, f(2))(2,f(2)) is a local maximum or minimum for the function f(x)=x2exx−1f(x)=\frac{x^2e^x}{x-1}f(x)=x−1x2ex.
Using a computer algebra system to graph f(x)=ln(x2+1)−xf(x)=\ln(x^2+1)-xf(x)=ln(x2+1)−x, determine the extremum at x=0x=0x=0 and classify it.
Using technology, classify the extremum at x=−1x=-1x=−1 for f(x)=x2exx−1f(x)=\frac{x^2e^x}{x-1}f(x)=x−1x2ex.
Using technology, determine if f(x)=x3−3x+1xf(x)=\frac{x^3-3x+1}{x}f(x)=xx3−3x+1 has a local extremum at x=1x=1x=1 and classify it.
Using a graphing tool, determine whether (0.5,f(0.5))(0.5, f(0.5))(0.5,f(0.5)) is a local maximum or minimum for f(x)=x2exx−1f(x)=\frac{x^2e^x}{x-1}f(x)=x−1x2ex.
With graphing technology, classify the extremum at x=0x=0x=0 for f(x)=sinxxf(x)=\frac{\sin x}{x}f(x)=xsinx (for x≠0x\neq0x=0, define f(0)=1f(0)=1f(0)=1).
Previous
Question Type 2: Finding the FOC for functions using technology
Next
No next topic