Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
A best-fit line for ln(y)\ln(y)ln(y) versus xxx gives the equation ln(y)=0.4x+1.3863.\ln(y)=0.4x+1.3863.ln(y)=0.4x+1.3863. Assuming the model y=4erxy=4e^{rx}y=4erx, determine the value of rrr.
Given that in the model y=4erxy=4e^{rx}y=4erx one measurement is y=10y=10y=10 at x=5x=5x=5, solve for rrr.
A linearized plot of ln(y)\ln(y)ln(y) versus xxx yields slope r=0.2r=0.2r=0.2. Determine the doubling time of yyy in the model y=4erxy=4e^{rx}y=4erx.
From a plot of ln(y4)\ln\bigl(\tfrac{y}{4}\bigr)ln(4y) versus xxx, the best-fit line is ln(y4)=0.35x−0.02.\ln\bigl(\tfrac{y}{4}\bigr)=0.35x-0.02.ln(4y)=0.35x−0.02. Determine rrr in the model y=4erxy=4e^{rx}y=4erx and interpret the small intercept.
In the model y=4erxy=4e^{rx}y=4erx you observe y=20y=20y=20 when x=10x=10x=10. Find rrr and then determine yyy at x=2x=2x=2.
A population starts at y=4y=4y=4 and doubles every 3 hours. Write a model of the form y=4erxy=4e^{rx}y=4erx and find the constant rrr.
From a best-fit line ln(y4)=0.22x\ln\bigl(\tfrac{y}{4}\bigr)=0.22xln(4y)=0.22x determine rrr in y=4erxy=4e^{rx}y=4erx, then predict yyy when x=5x=5x=5.
A plot of ln(y/4)\ln(y/4)ln(y/4) versus xxx yields a slope r=0.15r=0.15r=0.15. How long must one wait for yyy to reach 10 in the model y=4erxy=4e^{rx}y=4erx?
A linearized plot of ln(y)\ln(y)ln(y) versus xxx yields slope r=−0.1r=-0.1r=−0.1. Calculate the half-life of yyy if y=4erxy=4e^{rx}y=4erx.
Experimental data yields the best-fit line ln(y)=0.27x+1.2\ln(y)=0.27x+1.2ln(y)=0.27x+1.2 for a model y=4erxy=4e^{rx}y=4erx. Find rrr and compare the intercept with the theoretical value ln(4)\ln(4)ln(4).
Given data points (x,y)=(0,4),(2,6.0),(4,9.0)(x,y)=(0,4),(2,6.0),(4,9.0)(x,y)=(0,4),(2,6.0),(4,9.0) and assuming y=4erxy=4e^{rx}y=4erx, linearize by plotting xxx versus ln(y/4)\ln(y/4)ln(y/4), then use the two points (2,ln(6/4))(2,\ln(6/4))(2,ln(6/4)) and (4,ln(9/4))(4,\ln(9/4))(4,ln(9/4)) to determine rrr.
A radioactive substance follows y=4e−rxy=4e^{-rx}y=4e−rx. A plot of ln(y/4)\ln(y/4)ln(y/4) versus xxx has slope −0.07-0.07−0.07. Find the decay constant rrr and the half-life of the substance.
Previous
Question Type 2: Converting exponential and logarithmic models into linearized relations
Next
Question Type 4: Using log-log and semi-log variables for estimation of parameters