Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
For X∼N(5,9)X\sim N(5,9)X∼N(5,9), calculate the p-value for observing X>8X>8X>8.
For X∼N(5,9)X\sim N(5,9)X∼N(5,9), calculate the p-value for observing X<2X<2X<2.
For X∼N(5,9)X\sim N(5,9)X∼N(5,9), find the critical value aaa such that P(X<a)=0.07P(X<a)=0.07P(X<a)=0.07.
For X∼N(5,9)X\sim N(5,9)X∼N(5,9), find the critical value aaa such that P(X>a)=0.07P(X>a)=0.07P(X>a)=0.07.
For X∼N(5,9)X\sim N(5,9)X∼N(5,9), calculate the p-value for observing X≥11X\ge11X≥11.
For X∼N(5,9)X\sim N(5,9)X∼N(5,9), calculate the p-value for observing X≤−1X\le -1X≤−1.
For X∼N(5,9)X\sim N(5,9)X∼N(5,9), calculate the p-value for 2≤X≤82\le X\le82≤X≤8.
For X∼N(5,9)X\sim N(5,9)X∼N(5,9), find c>0c>0c>0 such that P(∣X−5∣<c)=0.93P\bigl(|X-5|<c\bigr)=0.93P(∣X−5∣<c)=0.93.
For X∼N(5,9)X\sim N(5,9)X∼N(5,9), find the critical value ccc such that P(X≤c)=0.025P(X\le c)=0.025P(X≤c)=0.025.
For X∼N(5,9)X\sim N(5,9)X∼N(5,9), given an observed value x0=10x_0=10x0​=10, compute the two-sided p-value for testing μ=5\mu=5μ=5.
For X∼N(5,9)X\sim N(5,9)X∼N(5,9), find the critical value ccc such that P(X≥c)=0.01P(X\ge c)=0.01P(X≥c)=0.01.
For X∼N(5,9)X\sim N(5,9)X∼N(5,9), find c>0c>0c>0 such that P(∣X−5∣>c)=0.07P\bigl(|X-5|>c\bigr)=0.07P(∣X−5∣>c)=0.07.
Previous
Question Type 1: Formulating test hypothesis for different types of tests
Next
Question Type 3: Initiating the chi-squared independence test with the hypothesis and critical regions