Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Samples: Sample 1 (n1=9n_1=9n1=9, xˉ1=50\bar x_1=50xˉ1=50, s1=6s_1=6s1=6), Sample 2 (n2=9n_2=9n2=9, xˉ2=45\bar x_2=45xˉ2=45, s2=7s_2=7s2=7). At 5% (two-tailed), find the critical ttt-value and conclusion for testing H0:μ1=μ2H_0:\mu_1=\mu_2H0:μ1=μ2.
Two small samples: Sample 1 (n1=15n_1=15n1=15, xˉ1=7.2\bar x_1=7.2xˉ1=7.2, s1=1.5s_1=1.5s1=1.5), Sample 2 (n2=15n_2=15n2=15, xˉ2=6.8\bar x_2=6.8xˉ2=6.8, s2=1.2s_2=1.2s2=1.2). At the 5% level, test H0:μ1=μ2H_0:\mu_1=\mu_2H0:μ1=μ2 vs H1:μ1>μ2H_1:\mu_1>\mu_2H1:μ1>μ2. Find the critical ttt and conclude.
A researcher compares the average reaction times of two groups. Sample 1: n1=12n_1=12n1=12, xˉ1=24\bar x_1=24xˉ1=24 ms, s1=4s_1=4s1=4 ms; Sample 2: n2=15n_2=15n2=15, xˉ2=20\bar x_2=20xˉ2=20 ms, s2=5s_2=5s2=5 ms. At the 5% significance level, test for a difference in means by finding the critical ttt-value and stating your conclusion.
Two independent samples yield: Sample 1: n1=20n_1=20n1=20, xˉ1=15\bar x_1=15xˉ1=15, s1=3s_1=3s1=3; Sample 2: n2=18n_2=18n2=18, xˉ2=12\bar x_2=12xˉ2=12, s2=4s_2=4s2=4. Test H0:μ1=μ2H_0:\mu_1=\mu_2H0:μ1=μ2 vs H1:μ1>μ2H_1:\mu_1>\mu_2H1:μ1>μ2 at the 5% level. Calculate the ttt-statistic, the one-tailed p-value, and state your conclusion.
Two larger samples: Sample 1 (n1=30n_1=30n1=30, xˉ1=54\bar x_1=54xˉ1=54, s1=8s_1=8s1=8), Sample 2 (n2=28n_2=28n2=28, xˉ2=50\bar x_2=50xˉ2=50, s2=7s_2=7s2=7). At the 5% level (two-tailed), find the critical ttt-value and conclude if the means differ.
Two small equal-size samples: Sample 1 (n1=12n_1=12n1=12, xˉ1=45\bar x_1=45xˉ1=45, s1=5s_1=5s1=5), Sample 2 (n2=12n_2=12n2=12, xˉ2=40\bar x_2=40xˉ2=40, s2=4s_2=4s2=4). Compute the two-tailed p-value for H0:μ1=μ2H_0:\mu_1=\mu_2H0:μ1=μ2 at 5% and conclude.
Samples of exam scores: Sample 1 (n1=25n_1=25n1=25, xˉ1=100\bar x_1=100xˉ1=100, s1=12s_1=12s1=12), Sample 2 (n2=30n_2=30n2=30, xˉ2=95\bar x_2=95xˉ2=95, s2=10s_2=10s2=10). At the 10% level, test if the mean of group 1 differs from group 2. Compute the two-tailed p-value and conclude.
Industrial lifetimes: Sample 1 (n1=18n_1=18n1=18, xˉ1=120\bar x_1=120xˉ1=120, s1=15s_1=15s1=15), Sample 2 (n2=16n_2=16n2=16, xˉ2=110\bar x_2=110xˉ2=110, s2=20s_2=20s2=20). Test H0:μ1=μ2H_0:\mu_1=\mu_2H0:μ1=μ2 vs H1:μ1>μ2H_1:\mu_1>\mu_2H1:μ1>μ2 at 5%. Compute the one-tailed p-value and conclusion.
Two samples of weights give Sample 1: n1=8n_1=8n1=8, xˉ1=85\bar x_1=85xˉ1=85, s1=6s_1=6s1=6; Sample 2: n2=10n_2=10n2=10, xˉ2=80\bar x_2=80xˉ2=80, s2=5s_2=5s2=5. At the 1% significance level, test for a difference in means (two-tailed). Find the critical ttt-value and conclude.
Samples: Sample 1 (n1=14n_1=14n1=14, xˉ1=5.4\bar x_1=5.4xˉ1=5.4, s1=0.8s_1=0.8s1=0.8), Sample 2 (n2=16n_2=16n2=16, xˉ2=5.1\bar x_2=5.1xˉ2=5.1, s2=0.9s_2=0.9s2=0.9). Test H0:μ1=μ2H_0:\mu_1=\mu_2H0:μ1=μ2 vs H1:μ1<μ2H_1:\mu_1<\mu_2H1:μ1<μ2 at 1%. Calculate the p-value and conclude.
Sample 1 (n1=16n_1=16n1=16, xˉ1=250\bar x_1=250xˉ1=250, s1=30s_1=30s1=30), Sample 2 (n2=14n_2=14n2=14, xˉ2=230\bar x_2=230xˉ2=230, s2=25s_2=25s2=25). Test H0:μ1=μ2H_0:\mu_1=\mu_2H0:μ1=μ2 vs H1:μ1≠μ2H_1:\mu_1\neq\mu_2H1:μ1=μ2. Compute the two-tailed p-value and conclude at 5%.
Sample 1 (n1=20n_1=20n1=20, xˉ1=200\bar x_1=200xˉ1=200, s1=30s_1=30s1=30), Sample 2 (n2=22n_2=22n2=22, xˉ2=185\bar x_2=185xˉ2=185, s2=25s_2=25s2=25). At 1% level, test H0:μ1=μ2H_0:\mu_1=\mu_2H0:μ1=μ2 vs H1:μ1>μ2H_1:\mu_1>\mu_2H1:μ1>μ2. Find the critical ttt and state your decision.
Previous
Question Type 13: Determining the type of two sample t-test and calculating the according t-statistic
Next
Question Type 15: Performing and entire statistical test