Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Determine the domain of f(x)=ln(ex−x)f(x)=\ln(e^x - x)f(x)=ln(ex−x).
Compute the first derivative of f(x)=ln(ex−x)f(x)=\ln(e^x - x)f(x)=ln(ex−x).
Evaluate f′′(x)f''(x)f′′(x) at x=−1x=-1x=−1, 000, and 222 and state the concavity of f(x)=ln(ex−x)f(x)=\ln(e^x - x)f(x)=ln(ex−x) at these points.
Find the second derivative f′′(x)f''(x)f′′(x) of f(x)=ln(ex−x)f(x)=\ln(e^x - x)f(x)=ln(ex−x).
Determine the intervals on which f(x)=ln(ex−x)f(x)=\ln(e^x - x)f(x)=ln(ex−x) is concave up and concave down.
Solve the equation f′′(x)=0f''(x)=0f′′(x)=0 for f(x)=ln(ex−x)f(x)=\ln(e^x - x)f(x)=ln(ex−x).
Construct a sign chart for f′′(x)=ex(2−x)−1(ex−x)2f''(x)=\frac{e^x(2-x)-1}{(e^x-x)^2}f′′(x)=(ex−x)2ex(2−x)−1 and use it to confirm concavity intervals.
Show by algebraic manipulation that $$ f''(x)=\frac{e^x(x-2)+x}{(e^x - x)^2}
Describe the behavior of the concavity of f(x)=ln(ex−x)f(x)=\ln(e^x - x)f(x)=ln(ex−x) as x→±∞x\to\pm\inftyx→±∞.
Find the coordinates of the inflection point(s) of f(x)=ln(ex−x)f(x)=\ln(e^x - x)f(x)=ln(ex−x).
Use two iterations of Newton–Raphson starting at x0=0x_0=0x0=0 to approximate the left-hand root of ex(2−x)−1=0e^x(2-x)-1=0ex(2−x)−1=0.
Prove that f(x)=ln(ex−x)f(x)=\ln(e^x - x)f(x)=ln(ex−x) has exactly two inflection points.
Previous
Question Type 2: Determining whether points satisfying the first order condition are local optimals
Next
No next topic