Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Let V=X−YV = X - YV=X−Y. Determine the distribution of VVV.
Given independent random variables X∼N(3,5)X\sim N(3,5)X∼N(3,5), Y∼N(4,1)Y\sim N(4,1)Y∼N(4,1) and Z∼N(0,1)Z\sim N(0,1)Z∼N(0,1), find the distribution of W=4X+2Y−Z.W = 4X + 2Y - Z.W=4X+2Y−Z.
Let U=X+Y+ZU = X + Y + ZU=X+Y+Z. Determine the distribution of UUU.
For WWW as defined above, compute P(W>20)P(W>20)P(W>20).
Compute P(X−Y>−1)P(X - Y > -1)P(X−Y>−1).
Define T=2X−3Y+ZT=2X - 3Y + ZT=2X−3Y+Z. Find the distribution of TTT.
For U=X+Y+ZU=X+Y+ZU=X+Y+Z, calculate P(7<U<9)P(7<U<9)P(7<U<9).
For T=2X−3Y+ZT=2X-3Y+ZT=2X−3Y+Z, compute P(T<0)P(T<0)P(T<0).
Find the value of ccc such that P(W<c)=0.90P(W<c)=0.90P(W<c)=0.90 for W∼N(20,85)W\sim N(20,85)W∼N(20,85).
Define M=3X+ZM=3X + ZM=3X+Z. Find P(M<10)P(M<10)P(M<10).
Find ddd such that P(T>d)=0.05P(T>d)=0.05P(T>d)=0.05 for T∼N(−6,30)T\sim N(-6,30)T∼N(−6,30).
Find the 97.5th percentile of M=3X+ZM=3X+ZM=3X+Z, that is, the value mmm such that P(M<m)=0.975P(M<m)=0.975P(M<m)=0.975.
Previous
No previous topic
Next
Question Type 2: Finding the distribution of the sample mean using CLT