Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
For random variables XXX and YYY with E(X)=3E(X)=3E(X)=3 and E(Y)=4E(Y)=4E(Y)=4, determine E(2X−4Y+7)E(2X - 4Y + 7)E(2X−4Y+7).
Given a random variable XXX has E(X)=4E(X)=4E(X)=4, calculate E(5X+3)E(5X+3)E(5X+3).
Given a random variable XXX has Var(X)=2\mathrm{Var}(X)=2Var(X)=2, calculate Var(5X+3)\mathrm{Var}(5X+3)Var(5X+3).
Given E(X)=2E(X)=2E(X)=2 and Var(X)=3\mathrm{Var}(X)=3Var(X)=3, find E(2X−7)E(2X-7)E(2X−7) and Var(2X−7)\mathrm{Var}(2X-7)Var(2X−7).
If XXX and YYY are independent with Var(X)=6\mathrm{Var}(X)=6Var(X)=6 and Var(Y)=2\mathrm{Var}(Y)=2Var(Y)=2, find Var(X−2Y+5)\mathrm{Var}(X - 2Y + 5)Var(X−2Y+5).
Let XXX, YYY, and ZZZ be independent with standard deviations σX=2\sigma_X=2σX=2, σY=1\sigma_Y=1σY=1, σZ=3\sigma_Z=3σZ=3 and E(X)=1E(X)=1E(X)=1, E(Y)=2E(Y)=2E(Y)=2, E(Z)=0E(Z)=0E(Z)=0. Find E(X+Y+Z)E(X+Y+Z)E(X+Y+Z) and Var(X+Y+Z)\mathrm{Var}(X+Y+Z)Var(X+Y+Z).
Random variables XXX and YYY are independent with E(X)=1E(X)=1E(X)=1, E(Y)=2E(Y)=2E(Y)=2, Var(X)=4\mathrm{Var}(X)=4Var(X)=4, and Var(Y)=9\mathrm{Var}(Y)=9Var(Y)=9. Find E(3X+4Y)E(3X+4Y)E(3X+4Y) and Var(3X+4Y)\mathrm{Var}(3X+4Y)Var(3X+4Y).
Random variables XXX and YYY are independent with standard deviations σX=3\sigma_X=3σX=3 and σY=2\sigma_Y=2σY=2. Given E(X+3Y)=3E(X+3Y)=3E(X+3Y)=3, find E(3X+9Y)E(3X+9Y)E(3X+9Y) and Var(3X+9Y)\mathrm{Var}(3X+9Y)Var(3X+9Y).
In a portfolio model, XXX and YYY represent returns on two independent assets with E(X)=0.05E(X)=0.05E(X)=0.05, E(Y)=0.02E(Y)=0.02E(Y)=0.02, σX=0.1\sigma_X=0.1σX=0.1, and σY=0.08\sigma_Y=0.08σY=0.08. An investor's total return is R=0.6X+0.4YR=0.6X+0.4YR=0.6X+0.4Y. Find E(R)E(R)E(R) and Var(R)\mathrm{Var}(R)Var(R).
Independent random variables XXX, YYY, and ZZZ satisfy E(X)=2E(X)=2E(X)=2, E(Y)=1E(Y)=1E(Y)=1, E(Z)=3E(Z)=3E(Z)=3, Var(X)=1\mathrm{Var}(X)=1Var(X)=1, Var(Y)=4\mathrm{Var}(Y)=4Var(Y)=4, and Var(Z)=9\mathrm{Var}(Z)=9Var(Z)=9. Find E(2X−Y+3Z)E(2X - Y + 3Z)E(2X−Y+3Z) and Var(2X−Y+3Z)\mathrm{Var}(2X - Y + 3Z)Var(2X−Y+3Z).
Random variables XXX and YYY have Var(X)=5\mathrm{Var}(X)=5Var(X)=5, Var(Y)=8\mathrm{Var}(Y)=8Var(Y)=8, and Cov(X,Y)=2\mathrm{Cov}(X,Y)=2Cov(X,Y)=2. Compute Var(2X−Y)\mathrm{Var}(2X - Y)Var(2X−Y).
Random variables XXX and YYY satisfy σX=3\sigma_X=3σX=3, σY=4\sigma_Y=4σY=4, and ρXY=0.6\rho_{XY}=0.6ρXY=0.6. Compute Var(4X+5Y)\mathrm{Var}(4X+5Y)Var(4X+5Y).
Previous
No previous topic
Next
Question Type 2: Finding the expected value or variance of a transformed linear combination of multiple variables given some information on their joint summary statistics