Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Compute the dot product acdot(b+2c)a\\cdot (b + 2c)acdot(b+2c) for a=(1,0,1)a=(1,0,1)a=(1,0,1), b=(3,2,1)b=(3,2,1)b=(3,2,1) and c=(5,6,1)c=(5,6,1)c=(5,6,1).
Calculate b⋅c−2 a⋅cb\cdot c - 2\,a\cdot cb⋅c−2a⋅c for a=(1,0,1)a=(1,0,1)a=(1,0,1), b=(3,2,1)b=(3,2,1)b=(3,2,1) and c=(5,6,1)c=(5,6,1)c=(5,6,1).
Determine whether the vectors a=(1,0,1)a=(1,0,1)a=(1,0,1) and c=(5,6,1)c=(5,6,1)c=(5,6,1) are perpendicular.
Compute b⋅(a−c)b\cdot (a - c)b⋅(a−c) for a=(1,0,1)a=(1,0,1)a=(1,0,1), b=(3,2,1)b=(3,2,1)b=(3,2,1) and c=(5,6,1)c=(5,6,1)c=(5,6,1).
Find the angle between the vectors p=(3,−1,2)p=(3,-1,2)p=(3,−1,2) and q=(1,2,−2)q=(1,2,-2)q=(1,2,−2).
Find the angle between the vectors u=(1,4,3)u=(1,4,3)u=(1,4,3) and v=(2,1,2)v=(2,1,2)v=(2,1,2).
Two unit vectors uuu and vvv satisfy u⋅v=12u\cdot v = \tfrac12u⋅v=21​. Find the angle between uuu and vvv.
Determine the value of kkk such that the vectors (k,2,3)(k,2,3)(k,2,3) and (1,k,4)(1,k,4)(1,k,4) are perpendicular.
Verify the distributive property a⋅(b+2c)=a⋅b+2 a⋅ca\cdot(b + 2c) = a\cdot b + 2\,a\cdot ca⋅(b+2c)=a⋅b+2a⋅c for a=(1,1,0)a=(1,1,0)a=(1,1,0), b=(2,−1,3)b=(2,-1,3)b=(2,−1,3) and c=(0,1,2)c=(0,1,2)c=(0,1,2) and compute the resulting value.
Show that the angle between the vectors (1,1,1)(1,1,1)(1,1,1) and (1,0,0)(1,0,0)(1,0,0) is acute and find its measure.
Find all real values of ttt such that the vectors (1,t,t2)(1,t,t^2)(1,t,t2) and (2,−1,1)(2,-1,1)(2,−1,1) are orthogonal.
In a parallelogram, the diagonals are given by a+ba + ba+b and a−ba - ba−b for a=(2,1,0)a=(2,1,0)a=(2,1,0) and b=(1,3,4)b=(1,3,4)b=(1,3,4). Find the angle between the diagonals.
Previous
No previous topic
Next
Question Type 2: Finding the angle between two different vectors