Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Determine whether the lines y=3x+2y=3x+2y=3x+2 and y=3x−5y=3x-5y=3x−5 are parallel, perpendicular or neither.
Determine whether the lines y=−12x+4y=-\tfrac12x+4y=−21x+4 and x+2y−3=0x+2y-3=0x+2y−3=0 are parallel, perpendicular or neither.
Determine whether the lines y−4=2(x+4)y-4=2(x+4)y−4=2(x+4) and −x−2y−1=0-x-2y-1=0−x−2y−1=0 are parallel, perpendicular or neither.
Determine whether the lines x−y=0x-y=0x−y=0 and x+y=0x+y=0x+y=0 are parallel, perpendicular or neither.
Determine whether the lines 2x+3y−6=02x+3y-6=02x+3y−6=0 and 3x−2y+4=03x-2y+4=03x−2y+4=0 are parallel, perpendicular or neither.
Determine whether the lines 4x−y+7=04x-y+7=04x−y+7=0 and 2x−12y−3=02x-\tfrac12y-3=02x−21y−3=0 are parallel, perpendicular or neither.
Determine whether the lines 3x−y+2=03x-y+2=03x−y+2=0 and y=13x−5y=\tfrac13x-5y=31x−5 are parallel, perpendicular or neither.
Determine whether the lines y+3=14(x−8)y+3=\tfrac14(x-8)y+3=41(x−8) and 4y−x+2=04y-x+2=04y−x+2=0 are parallel, perpendicular or neither.
Determine whether the lines 5x+2y=15x+2y=15x+2y=1 and −10x−4y+5=0-10x-4y+5=0−10x−4y+5=0 are parallel, perpendicular or neither.
Determine whether the line through points (1,2)(1,2)(1,2) and (4,8)(4,8)(4,8) and the line 2x−y+5=02x-y+5=02x−y+5=0 are parallel, perpendicular or neither.
Determine whether the lines 7x+y−4=07x+y-4=07x+y−4=0 and 2x−14y+3=02x-14y+3=02x−14y+3=0 are parallel, perpendicular or neither.
Determine whether the line through points (0,0)(0,0)(0,0) and (3,6)(3,6)(3,6) and the line through (1,−2)(1,-2)(1,−2) with slope −12-\tfrac12−21 are parallel, perpendicular or neither.
Previous
Question Type 5: Using two points to find the equation of a line and the y-intercept
Next
Question Type 7: Finding a parallel line and perpendicular line passing through specific point for a given line