Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Simplify the expression log3(81)+2log3(3)−log3(9)\log_3(81) + 2\log_3(3) - \log_3(9)log3(81)+2log3(3)−log3(9).
Simplify the expression log5(125)+2log5(15)\log_5(125) + 2\log_5\bigl(\tfrac{1}{5}\bigr)log5(125)+2log5(51).
Condense the expression 2ln(a)+3ln(b)−ln(c)2\ln(a) + 3\ln(b) - \ln(c)2ln(a)+3ln(b)−ln(c) into a single logarithm.
If log3(b)=4\log_3(b) = 4log3(b)=4, calculate log3(1/b)\log_3\bigl(1/b\bigr)log3(1/b).
Expand the logarithm log (xy2z3)\log\!\Bigl(\dfrac{\sqrt{x y^2}}{z^3}\Bigr)log(z3xy2) into a sum and difference of simpler logs.
Given log3(b)=4\log_3(b) = 4log3(b)=4, find log3(b)\log_3\bigl(\sqrt{b}\bigr)log3(b).
Given a=log28a=\log_2 8a=log28 and b=log232b=\log_2 32b=log232, express log216\log_2 16log216 in terms of aaa and bbb.
Given log3(b)=4\log_3(b) = 4log3(b)=4, find log3(b9)\log_3\bigl(\tfrac{b}{9}\bigr)log3(9b).
Given a=log52a=\log_5 2a=log52 and b=log53b=\log_5 3b=log53, express log572\log_5 72log572 in terms of aaa and bbb.
Solve for xxx: ln(x)+ln(x−2)−ln(3x)=0\ln(x) + \ln(x - 2) - \ln(3x) = 0ln(x)+ln(x−2)−ln(3x)=0.
Given a=log32a=\log_3 2a=log32 and b=log35b=\log_3 5b=log35, express log340\log_3 40log340 in terms of aaa and bbb.
If log3(b)=4\log_3(b) = 4log3(b)=4, determine log3(27b)\log_3\bigl(27b\bigr)log3(27b).
Given a=log23a=\log_2 3a=log23 and b=log25b=\log_2 5b=log25, find log215\log_2\sqrt{15}log215 in terms of aaa and bbb.
Given a=log23a=\log_2 3a=log23 and b=log27b=\log_2 7b=log27, express log2212\log_2\frac{21}{2}log2221 in terms of aaa and bbb.
Solve for xxx: log5(x2−5x)=log5(6)\log_5(x^2 - 5x) = \log_5(6)log5(x2−5x)=log5(6).
Solve for xxx: 3log4(x)−log4(2)=23\log_4(x) - \log_4(2) = 23log4(x)−log4(2)=2.
Solve for xxx: log2(x)+log2(x−3)=3\log_2(x) + \log_2(x - 3) = 3log2(x)+log2(x−3)=3.
Given log52=p\log_5 2=plog52=p and log57=q\log_5 7=qlog57=q, express log51425\log_5\frac{14}{25}log52514 in terms of ppp and qqq.
Solve for xxx: log3(2x+1)−log3(x−1)=2\log_3(2x + 1) - \log_3(x - 1) = 2log3(2x+1)−log3(x−1)=2.
Expand the logarithm ln (x2y3z4)\ln\!\Bigl(\dfrac{x^2\sqrt{y^3}}{z^4}\Bigr)ln(z4x2y3) into a sum and difference of simpler ln terms.
Simplify the expression log10 (100x2x)\log_{10}\!\Bigl(\dfrac{100x^2}{\sqrt{x}}\Bigr)log10(x100x2).
Solve for xxx: log3(x−1)+log3(x+2)=2\log_3(x - 1) + \log_3(x + 2) = 2log3(x−1)+log3(x+2)=2.
Given a=log23a=\log_2 3a=log23 and b=log25b=\log_2 5b=log25, express log2(45)\log_2(45)log2(45) in terms of aaa and bbb.
Previous
Question Type 3: Applying indices and negative exponents
Next
Question Type 5: Simplifying expressions to a single logarithm