Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
For X∼N(20,42)X\sim N(20,4^2)X∼N(20,42), find fff such that P(X>f)=0.20P(X>f)=0.20P(X>f)=0.20.
For Z∼N(0,1)Z\sim N(0,1)Z∼N(0,1), find zzz such that P(Z>z)=0.1587P(Z>z)=0.1587P(Z>z)=0.1587.
For X∼N(8,32)X\sim N(8,3^2)X∼N(8,32), find bbb such that P(X<b)=0.60P(X<b)=0.60P(X<b)=0.60.
For X∼N(8,32)X\sim N(8,3^2)X∼N(8,32), find the value aaa such that P(X>a)=0.75P(X>a)=0.75P(X>a)=0.75.
Test scores X∼N(70,82)X\sim N(70,8^2)X∼N(70,82). Find the pass mark ppp so that only the top 10% of students pass.
For X∼N(120,152)X\sim N(120,15^2)X∼N(120,152), find eee such that P(X<e)=0.025P(X<e)=0.025P(X<e)=0.025.
For X∼N(100,102)X\sim N(100,10^2)X∼N(100,102), find ccc such that P(X>c)=0.05P(X>c)=0.05P(X>c)=0.05.
Lifetimes of bulbs X∼N(2000,2002)X\sim N(2000,200^2)X∼N(2000,2002). Find the lifetime LLL below which 30% of bulbs fail.
Let Z∼N(0,1)Z\sim N(0,1)Z∼N(0,1). Find zzz such that P(−z<Z<z)=0.95P(-z<Z<z)=0.95P(−z<Z<z)=0.95.
For X∼N(60,122)X\sim N(60,12^2)X∼N(60,122), find ggg such that P(g<X<75)=0.80P(g<X<75)=0.80P(g<X<75)=0.80.
For X∼N(5,22)X\sim N(5,2^2)X∼N(5,22), find values aaa and bbb symmetric about the mean so that P(a<X<b)=0.80P(a<X<b)=0.80P(a<X<b)=0.80.
Previous
Question Type 3: Finding the probability values of normally distributed variables
Next
No next topic