Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Using a graphing calculator, solve on the interval 0≤x≤2π0 \le x \le 2\pi0≤x≤2π: sinx>0.3\sin x > 0.3sinx>0.3. Give your answer as interval(s) with endpoints to 3 d.p.
Using a graphing calculator, solve e−x2≥0.2e^{-x^{2}} \ge 0.2e−x2≥0.2 on R\mathbb{R}R. Give endpoints to 3 d.p.
Using a graphing calculator, solve on (−π3, π3)\left(-\frac{\pi}{3},\,\frac{\pi}{3}\right)(−3π,3π): tanx≥x\tan x \ge xtanx≥x.
Solve, using a graphing calculator, ln(x+1)>2−x\ln(x+1) > 2 - xln(x+1)>2−x for x>−1x > -1x>−1. Give the critical value to 3 d.p.
Using a graphing calculator, solve the inequality ex<2−xe^{x} < 2 - xex<2−x on R\mathbb{R}R, giving the boundary value to 3 d.p.
Using a graphing calculator, solve for x>0x>0x>0: lnx≤1−x2\ln x \le 1 - \frac{x}{2}lnx≤1−2x. Give the boundary value to 3 d.p.
Using a graphing calculator, solve cosx≥0.2x\cos x \ge 0.2xcosx≥0.2x on [−2,2][-2,2][−2,2]. Give endpoints to 3 d.p.
Using a graphing calculator, solve ∣x∣≤e−x|x| \le e^{-x}∣x∣≤e−x on R\mathbb{R}R. Give the positive boundary to 3 d.p.
Using a graphing calculator, solve 2x≤x2+12^{x} \le x^{2} + 12x≤x2+1 on R\mathbb{R}R. Give the largest boundary value to 3 d.p.
Use a graphing calculator to solve for xxx in [0,3][0,3][0,3]: cosx=ln(x+2)\cos x = \ln(x+2)cosx=ln(x+2). Give the solution to 3 d.p.
Using a graphing calculator, solve ex≥3xe^{x} \ge 3xex≥3x on R\mathbb{R}R. Give the boundary values to 3 d.p.
Using a graphing calculator, solve sinx<x5\sin x < \frac{x}{5}sinx<5x on [−π, π][-\pi,\,\pi][−π,π]. Give numerical endpoints to 3 d.p.
Previous
Question Type 2: Solving polynomial inequalities analytically
Next
No next topic