Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Express log2(16)=x\log_{2}(16) = xlog2(16)=x in exponential form and find xxx.
Convert the equation 2x−5y+10=02x - 5y + 10 = 02x−5y+10=0 to slope–intercept form y=mx+cy = mx + cy=mx+c.
Convert the equation y=3x+7y = 3x + 7y=3x+7 to standard form Ax+By+C=0Ax + By + C = 0Ax+By+C=0.
Express the equation 9=3x9 = 3^x9=3x in logarithmic form.
Factorise the quadratic y=x2−6x+8y = x^2 - 6x + 8y=x2−6x+8 into the form y=(x−p)(x−q)y = (x - p)(x - q)y=(x−p)(x−q).
Convert the factorised form y=(x+1)(x−4)y = (x + 1)(x - 4)y=(x+1)(x−4) into standard form y=ax2+bx+cy = ax^2 + bx + cy=ax2+bx+c.
Convert the vertex-form quadratic y=3(x−2)2+4y = 3(x - 2)^2 + 4y=3(x−2)2+4 into standard form y=ax2+bx+cy = ax^2 + bx + cy=ax2+bx+c.
Convert the quadratic y=2x2−8x+5y = 2x^2 - 8x + 5y=2x2−8x+5 into vertex form y=a(x−h)2+ky = a(x - h)^2 + ky=a(x−h)2+k.
Convert the circle (x−3)2+(y+2)2=25(x - 3)^2 + (y + 2)^2 = 25(x−3)2+(y+2)2=25 into general form x2+y2+Dx+Ey+F=0x^2 + y^2 + Dx + Ey + F = 0x2+y2+Dx+Ey+F=0.
Convert the circle x2+y2−4x+6y−12=0x^2 + y^2 - 4x + 6y - 12 = 0x2+y2−4x+6y−12=0 into centre–radius form (x−h)2+(y−k)2=r2(x - h)^2 + (y - k)^2 = r^2(x−h)2+(y−k)2=r2.
Convert the parametric line x=2t+1x = 2t + 1x=2t+1, y=−3t+4y = -3t + 4y=−3t+4 into a single Cartesian equation in xxx and yyy.
Convert the Cartesian line 3x+4y=123x + 4y = 123x+4y=12 into parametric form x=x0+atx = x_0 + atx=x0+at, y=y0+bty = y_0 + bty=y0+bt.
Previous
Question Type 2: Finding the equation of a straight line using a point and a gradient
Next
Question Type 4: Finding the gradient using two points