Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Identify the amplitude and period of y=2sin(x3)y = 2\\sin\bigl(\frac{x}{3}\bigr)y=2sin(3x) on the domain −π<x<π-\pi < x < \pi−π<x<π.
Find all xxx-intercepts of y=2sin(x3)y = 2\sin\bigl(\frac{x}{3}\bigr)y=2sin(3x) in the interval −π<x<π-\pi < x < \pi−π<x<π.
Find the period and midline of y=4sin(x4)−3y = 4\sin\bigl(\frac{x}{4}\bigr) - 3y=4sin(4x)−3.
Determine the maximum and minimum values of y=3cos(2x+π)y = 3\cos\bigl(2x + \pi\bigr)y=3cos(2x+π) on −π<x<π-\pi < x < \pi−π<x<π.
Solve sin(x2)+2=0\sin\bigl(\frac{x}{2}\bigr) + 2 = 0sin(2x)+2=0 for −π<x<π-\pi < x < \pi−π<x<π.
Write the function obtained by shifting y=2sin(x3)y = 2\sin\bigl(\frac{x}{3}\bigr)y=2sin(3x) up by 1 unit, and determine its new maximum value.
Determine the range and period of y=−2cos(x6)+4y = -2\cos\bigl(\frac{x}{6}\bigr) + 4y=−2cos(6x)+4 on −π<x<π-\pi < x < \pi−π<x<π.
Solve the equation 2sin(x3)−1=02\sin\bigl(\frac{x}{3}\bigr) - 1 = 02sin(3x)−1=0 for −π<x<π-\pi < x < \pi−π<x<π.
Solve 5sin(3x−π)+2=25\sin\bigl(3x - \pi\bigr) + 2 = 25sin(3x−π)+2=2 for −π<x<π-\pi < x < \pi−π<x<π.
For y=sin(3x−π2)y = \sin\bigl(3x - \tfrac{\pi}{2}\bigr)y=sin(3x−2π), find the phase shift and the first positive xxx-intercept in −π<x<π-\pi < x < \pi−π<x<π.
Given y=−sin(2x+π3)y = -\sin\bigl(2x + \tfrac{\pi}{3}\bigr)y=−sin(2x+3π), find one interval of length one period within −π<x<π-\pi < x < \pi−π<x<π and list all xxx in that interval where y=0y=0y=0.
For y=5sin(3x−π)+2y = 5\sin\bigl(3x - \pi\bigr) + 2y=5sin(3x−π)+2, find the amplitude, period, and equation of the midline.
Previous
Question Type 3: Applying and describing transformations applied to trigonometric function
Next
No next topic