Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Express sin(−θ)\sin(-\theta)sin(−θ) using only sinθ\sin\thetasinθ.
Simplify sin(2π−θ)\sin(2\pi - \theta)sin(2π−θ) in terms of sinθ\sin\thetasinθ.
Simplify sin(π+θ)\sin(\pi + \theta)sin(π+θ) in terms of sinθ\sin\thetasinθ.
Simplify −2sin(−θ)+3sin(π−θ)-2\sin(-\theta) + 3\sin(\pi - \theta)−2sin(−θ)+3sin(π−θ) in terms of sinθ\sin\thetasinθ.
Express cos2θ\cos2\thetacos2θ in terms of sinθ\sin\thetasinθ only.
Simplify −3sin(3π−θ)-3\sin(3\pi - \theta)−3sin(3π−θ) in terms of sinθ\sin\thetasinθ.
Simplify −sin(π2+θ)-\sin\bigl(\tfrac{\pi}{2}+\theta\bigr)−sin(2π+θ) in terms of cosθ\cos\thetacosθ.
Express cosθ−sinθ\cos\theta - \sin\thetacosθ−sinθ in the form 2 sin(α−θ)\sqrt{2}\,\sin\bigl(\alpha - \theta\bigr)2sin(α−θ), stating the value of α\alphaα.
Write f(θ)=5sinθ+5cosθf(\theta) = 5\sin\theta + 5\cos\thetaf(θ)=5sinθ+5cosθ in the form Rsin(θ+α)R\sin(\theta + \alpha)Rsin(θ+α), where R>0R>0R>0 and 0<α<π20<\alpha<\tfrac{\pi}{2}0<α<2π.
Express g(x)=sinx+3cosxg(x) = \sin x + \sqrt{3}\cos xg(x)=sinx+3cosx in the form Rcos(x−α)R\cos(x - \alpha)Rcos(x−α), where R>0R>0R>0 and 0<α<π20<\alpha<\tfrac{\pi}{2}0<α<2π.
Express h(x)=2sin3x−2cos3xh(x) = 2\sin3x - 2\cos3xh(x)=2sin3x−2cos3x in the form Rsin(3x−α)R\sin(3x - \alpha)Rsin(3x−α), where R>0R>0R>0 and 0<α<π20<\alpha<\tfrac{\pi}{2}0<α<2π.
Prove the identity sin3θ=3sinθ−4sin3θ\sin3\theta = 3\sin\theta - 4\sin^3\thetasin3θ=3sinθ−4sin3θ.
Previous
No previous topic
Next
No next topic