Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Let X∼N(0,1)X\sim N(0,1)X∼N(0,1). Find the value aaa such that P(X>a)=0.3P(X > a) = 0.3P(X>a)=0.3.
Let X∼N(0,1)X\sim N(0,1)X∼N(0,1). Given P(X<a)=0.05P(X < a)=0.05P(X<a)=0.05, find P(X>−a)P(X > -a)P(X>−a).
Let X∼N(2,4)X\sim N(2,4)X∼N(2,4). Find the value aaa such that P(X>a)=0.3P(X > a) = 0.3P(X>a)=0.3.
In a population of adult heights, X∼N(170,62)X\sim N(170,6^2)X∼N(170,62). What is the probability that a randomly chosen adult is taller than 172 cm?
Let X∼N(0,1)X\sim N(0,1)X∼N(0,1). Given P(X>1.3)=pP(X > 1.3)=pP(X>1.3)=p, express P(X<−1.3)P(X < -1.3)P(X<−1.3) in terms of ppp.
Let X∼N(0,1)X\sim N(0,1)X∼N(0,1). Compute P(∣X∣>2)P\bigl(|X| > 2\bigr)P(∣X∣>2).
Let X∼N(10,9)X\sim N(10,9)X∼N(10,9). Find the value aaa such that P(X<a)=0.8P(X < a) = 0.8P(X<a)=0.8.
Let X∼N(10,4)X\sim N(10,4)X∼N(10,4). Find ccc such that P(10−c<X<10+c)=0.95P(10 - c < X < 10 + c)=0.95P(10−c<X<10+c)=0.95.
Let X∼N(5,16)X\sim N(5,16)X∼N(5,16). Find aaa such that P(X>a)=0.025P(X > a) = 0.025P(X>a)=0.025.
Let X∼N(50,16)X\sim N(50,16)X∼N(50,16). Find aaa such that P(X>a)=0.84P(X > a) = 0.84P(X>a)=0.84.
Let X∼N(100,25)X\sim N(100,25)X∼N(100,25). If P(X>a)=0.1P(X > a)=0.1P(X>a)=0.1, find P(X<200−a)P\bigl(X < 200 - a\bigr)P(X<200−a).
Let X∼N(3,1)X\sim N(3,1)X∼N(3,1). If P(X>a)=0.3P(X > a)=0.3P(X>a)=0.3, calculate 1−P(X<4−a)1 - P\bigl(X < 4 - a\bigr)1−P(X<4−a).
Previous
No previous topic
Next
Question Type 2: Finding the interval for which a specific percentage of data is concentrated