Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Compare the end behavior of the two polynomials y1=(x−4)(x−3)(x−2)y_1=(x-4)(x-3)(x-2)y1=(x−4)(x−3)(x−2) and y2=(x−1)(x−3)(x−2)y_2=(x-1)(x-3)(x-2)y2=(x−1)(x−3)(x−2).
Determine the xxx- and yyy-intercepts of the curve y=(x−4)(x−3)(x−2)y=(x-4)(x-3)(x-2)y=(x−4)(x−3)(x−2).
Sketch the graph of y=(x−4)(x−3)(x−2)y = (x-4)(x-3)(x-2)y=(x−4)(x−3)(x−2). Identify its xxx-intercepts and describe its end behavior.
Sketch the graph of y=(x−1)(x−3)(x−2)y = (x-1)(x-3)(x-2)y=(x−1)(x−3)(x−2). Identify its xxx-intercepts and state the sign of yyy in each interval determined by the roots.
Express (x−4)(x−3)(x−2)−(x−1)(x−3)(x−2)(x-4)(x-3)(x-2)-(x-1)(x-3)(x-2)(x−4)(x−3)(x−2)−(x−1)(x−3)(x−2) in fully factored form.
Solve the equation (x−4)(x−3)(x−2)=(x−1)(x−3)(x−2)(x-4)(x-3)(x-2)=(x-1)(x-3)(x-2)(x−4)(x−3)(x−2)=(x−1)(x−3)(x−2).
Solve the inequality (x−4)(x−3)(x−2)>(x−1)(x−3)(x−2)(x-4)(x-3)(x-2)>(x-1)(x-3)(x-2)(x−4)(x−3)(x−2)>(x−1)(x−3)(x−2).
Determine the intervals where f(x)=(x−4)(x−3)(x−2)f(x)=(x-4)(x-3)(x-2)f(x)=(x−4)(x−3)(x−2) is increasing and where it is decreasing.
Solve the equation (x−4)(x−3)(x−2)−(x−1)(x−3)(x−2)=2(x-4)(x-3)(x-2)-(x-1)(x-3)(x-2)=2(x−4)(x−3)(x−2)−(x−1)(x−3)(x−2)=2.
Find the coordinates of the turning points of y=(x−1)(x−3)(x−2)y=(x-1)(x-3)(x-2)y=(x−1)(x−3)(x−2).
Calculate the yyy-values at the turning points of y=(x−4)(x−3)(x−2)y=(x-4)(x-3)(x-2)y=(x−4)(x−3)(x−2).
Show that the inflection point of y=(x−1)(x−2)(x−3)y=(x-1)(x-2)(x-3)y=(x−1)(x−2)(x−3) occurs at x=2x=2x=2 and find its yyy-coordinate.
Previous
No previous topic
Next
Question Type 2: Solving polynomial inequalities analytically