Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Let X∼U(0,3)X \sim \text{U}(0,3)X∼U(0,3). Calculate P(1<X<2)P(1 < X < 2)P(1<X<2).
Let XXX be a discrete random variable with P(X=k)=c k2P(X=k)=c\,k^2P(X=k)=ck2 for k=1,2,3k=1, 2, 3k=1,2,3.
Find the value of ccc.
Calculate P(X=3)P(X=3)P(X=3).
Let XXX be a discrete random variable with probability mass function P(X=x)=611xP(X=x)=\frac{6}{11x}P(X=x)=11x6 for x∈{1,2,3}x \in \{1, 2, 3\}x∈{1,2,3}. Calculate P(X>1)P(X > 1)P(X>1).
A random variable XXX has probability mass function P(X=0)=0.1P(X=0)=0.1P(X=0)=0.1, P(X=1)=0.2P(X=1)=0.2P(X=1)=0.2, P(X=2)=0.3P(X=2)=0.3P(X=2)=0.3, P(X=3)=0.4P(X=3)=0.4P(X=3)=0.4. Find P(X≤2)P(X\le2)P(X≤2).
Two fair dice are rolled once. Let SSS be their sum. Calculate P(S≥9)P(S\ge9)P(S≥9).
A biased coin has P(heads)=0.6P(\text{heads})=0.6P(heads)=0.6. It is flipped twice. Let XXX be the number of heads. Find P(X=1)P(X=1)P(X=1).
A fair six-sided die is rolled once. Let XXX be the outcome. Find the probability that XXX is even or greater than 4.
A random variable XXX takes values 0,1,2,3,40, 1, 2, 3, 40,1,2,3,4 with P(X=0)=0.2,P(X=1)=0.3,P(X=2)=0.25,P(X=3)=0.15,P(X=4)=0.1P(X=0)=0.2, P(X=1)=0.3, P(X=2)=0.25, P(X=3)=0.15, P(X=4)=0.1P(X=0)=0.2,P(X=1)=0.3,P(X=2)=0.25,P(X=3)=0.15,P(X=4)=0.1. Compute P(1<X≤4)P(1 < X \le 4)P(1<X≤4).
The pmf of XXX is P(X=0)=0.5P(X=0)=0.5P(X=0)=0.5, P(X=1)=0.3P(X=1)=0.3P(X=1)=0.3, P(X=2)=0.2P(X=2)=0.2P(X=2)=0.2. Find P(X=2∣X>0)P(X=2\mid X>0)P(X=2∣X>0).
Let X∼B(5,0.4)X \sim \text{B}(5, 0.4)X∼B(5,0.4). Determine P(X≤2)P(X \le 2)P(X≤2).
Let XXX be geometric with P(X=k)=0.3 (0.7)k−1P(X=k)=0.3\,(0.7)^{k-1}P(X=k)=0.3(0.7)k−1 for k=1,2,…k=1,2,\dotsk=1,2,…. Find P(X>3)P(X>3)P(X>3).
Suppose X∼Exponential(λ=2)X\sim\text{Exponential}(\lambda=2)X∼Exponential(λ=2). Find P(X>1)P(X>1)P(X>1).
Previous
No previous topic
Next
Question Type 2: Finding the expected value of outcomes of random variables