Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
A fair six‐sided die is rolled once. Let XXX be the outcome. Find the probability that XXX is even or greater than 4.
A random variable XXX has pmf P(X=0)=0.1P(X=0)=0.1P(X=0)=0.1, P(X=1)=0.2P(X=1)=0.2P(X=1)=0.2, P(X=2)=0.3P(X=2)=0.3P(X=2)=0.3, P(X=3)=0.4P(X=3)=0.4P(X=3)=0.4. Find P(X≤2)P(X\le2)P(X≤2).
Two fair dice are rolled once. Let SSS be their sum. Calculate P(S≥9)P(S\ge9)P(S≥9).
A biased coin has P(heads)=0.6P(\text{heads})=0.6P(heads)=0.6. It is flipped twice. Let XXX be the number of heads. Find P(X=1)P(X=1)P(X=1).
Let X∼Uniform(0,3)X\sim\text{Uniform}(0,3)X∼Uniform(0,3) be continuous. Calculate P(1<X<2)P(1<X<2)P(1<X<2).
Let XXX be a discrete random variable with probability mass function P(X=x)=611xP(X=x)=\frac{6}{11x}P(X=x)=11x6 for x∈{1,2,3}x\in\{1,2,3\}x∈{1,2,3}. Calculate P(X>1)P(X>1)P(X>1).
A random variable XXX takes values 0,1,2,3,40,1,2,3,40,1,2,3,4 with P(X=0)=0.2,P(X=1)=0.3,P(X=2)=0.25,P(X=3)=0.15,P(X=4)=0.1P(X=0)=0.2,P(X=1)=0.3,P(X=2)=0.25,P(X=3)=0.15,P(X=4)=0.1P(X=0)=0.2,P(X=1)=0.3,P(X=2)=0.25,P(X=3)=0.15,P(X=4)=0.1. Compute P(1<X≤4)P(1<X\le4)P(1<X≤4).
The pmf of XXX is P(X=0)=0.5P(X=0)=0.5P(X=0)=0.5, P(X=1)=0.3P(X=1)=0.3P(X=1)=0.3, P(X=2)=0.2P(X=2)=0.2P(X=2)=0.2. Find P(X=2∣X>0)P(X=2\mid X>0)P(X=2∣X>0).
Let XXX be geometric with P(X=k)=0.3 (0.7)k−1P(X=k)=0.3\,(0.7)^{k-1}P(X=k)=0.3(0.7)k−1 for k=1,2,…k=1,2,\dotsk=1,2,…. Find P(X>3)P(X>3)P(X>3).
Let X∼Binomial(n=5,p=0.4)X\sim\text{Binomial}(n=5,p=0.4)X∼Binomial(n=5,p=0.4). Determine P(X≤2)P(X\le2)P(X≤2).
Let XXX be a discrete variable with P(X=k)=c k2P(X=k)=c\,k^2P(X=k)=ck2 for k=1,2,3k=1,2,3k=1,2,3. (a) Find ccc. (b) Then calculate P(X=3)P(X=3)P(X=3).
Suppose X∼Exponential(λ=2)X\sim\text{Exponential}(\lambda=2)X∼Exponential(λ=2). Compute P(X>1)P(X>1)P(X>1).
Previous
No previous topic
Next
Question Type 2: Finding the expected value of outcomes of random variables