Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Find f(4)(x)f^{(4)}(x)f(4)(x) for f(x)=e3xf(x)=e^{3x}f(x)=e3x.
Evaluate h(5) (π4)h^{(5)}\!\left(\tfrac{\pi}{4}\right)h(5)(4π) for h(x)=sinx−cosxh(x)=\sin x-\cos xh(x)=sinx−cosx.
Compute y(5)(x)y^{(5)}(x)y(5)(x) for y=sin(2x)y=\sin(2x)y=sin(2x).
Find the sixth derivative of y=cos(5x)y=\cos(5x)y=cos(5x).
Evaluate f(6)(0)f^{(6)}(0)f(6)(0) for f(x)=sin(3x)f(x)=\sin(3x)f(x)=sin(3x).
Find the smallest positive integer nnn such that f(n)(x)=f(x)f^{(n)}(x)=f(x)f(n)(x)=f(x) for f(x)=sinx+cosxf(x)=\sin x+\cos xf(x)=sinx+cosx.
Find y(6)(x)y^{(6)}(x)y(6)(x) for y=sinx+2sin(x+π3)y=\sin x+2\sin\big(x+\tfrac{\pi}{3}\big)y=sinx+2sin(x+3π).
Evaluate f(5)(0)f^{(5)}(0)f(5)(0) for f(x)=cos(2x)+sin(3x)f(x)=\cos(2x)+\sin(3x)f(x)=cos(2x)+sin(3x).
Previous
Question Type 2: Derivatives from first principles
Next
Question Type 4: Induction with n-th order derivatives