Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Given the displacement s(t)=5t2−3t+2s(t)=5t^2-3t+2s(t)=5t2−3t+2, find the velocity v(t)v(t)v(t).
Given the velocity v(t)=6t2−4t+3v(t)=6t^2-4t+3v(t)=6t2−4t+3, find the acceleration a(t)a(t)a(t).
Given the displacement s(t)=4t3−2t2+t−7s(t)=4t^3-2t^2+t-7s(t)=4t3−2t2+t−7, find the acceleration a(t)a(t)a(t).
Given the displacement s(t)=e2ts(t)=e^{2t}s(t)=e2t, find the velocity v(t)v(t)v(t).
Given the displacement s(t)=e−t+sin(2t)s(t)=e^{-t}+\sin(2t)s(t)=e−t+sin(2t), find the velocity v(t)v(t)v(t).
Given the velocity v(t)=ln(t2+1)v(t)=\ln(t^2+1)v(t)=ln(t2+1), find the acceleration a(t)a(t)a(t).
Given the displacement s(t)=t3sints(t)=t^3\sin ts(t)=t3sint, find the velocity v(t)v(t)v(t).
Given the velocity v(t)=t,e−2tv(t)=t\\,e^{-2t}v(t)=t,e−2t, find the acceleration a(t)a(t)a(t).
Given the velocity v(t)=ettv(t)=\frac{e^t}{t}v(t)=tet, find the acceleration a(t)a(t)a(t).
Given the displacement s(t)=sintts(t)=\frac{\sin t}{t}s(t)=tsint, find the velocity v(t)v(t)v(t).
Given the displacement s(t)=sin(t2)s(t)=\sin(t^2)s(t)=sin(t2), find the acceleration a(t)a(t)a(t).
Given the velocity v(t)=ln(sint)v(t)=\ln(\sin t)v(t)=ln(sint), find the acceleration a(t)a(t)a(t).
Previous
No previous topic
Next
Question Type 2: Finding specific conditions on velocity and acceleration