Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Using first principles, compute the derivative of f(x)=cos2xf(x)=\cos^2xf(x)=cos2x.
Using the definition of the derivative (first principles), find f′(x)f'(x)f′(x) for f(x)=xsinxf(x)=x\\sin xf(x)=xsinx.
Find f′(x)f'(x)f′(x) for f(x)=sin2xf(x)=\sin^2xf(x)=sin2x from first principles.
Using first principles, find f′(x)f'(x)f′(x) for f(x)=x2cosxf(x)=x^2\\cos xf(x)=x2cosx.
Find f′(x)f'(x)f′(x) for f(x)=x,exf(x)=x\\,e^xf(x)=x,ex using the definition of the derivative.
Using the definition of the derivative, find f′(x)f'(x)f′(x) for f(x)=x2lnxf(x)=x^2\\ln xf(x)=x2lnx for x>0x>0x>0.
Using the first principles definition, compute the derivative of f(x)=cosxsinxf(x)=\cos x\\sin xf(x)=cosxsinx.
Using first principles, find f′(x)f'(x)f′(x) for f(x)=x2,e−xf(x)=x^2\\,e^{-x}f(x)=x2,e−x.
Using first principles, compute the derivative of f(x)=exsinxf(x)=e^x\\sin xf(x)=exsinx.
Using first principles, compute the derivative of f(x)=ln(x)sinxf(x)=\ln(x)\\sin xf(x)=ln(x)sinx for x>0x>0x>0.
Using first principles, find the derivative of f(x)=sinxxf(x)=\frac{\sin x}{x}f(x)=xsinx for x≠0x\neq0x=0.
Using the definition of the derivative, compute f′(x)f'(x)f′(x) for f(x)=x3cosxf(x)=x^3\\cos xf(x)=x3cosx.
Previous
Question Type 1: Computing more complex limits with L’Hopitals rule
Next
Question Type 3: Applying L’Hôpital’s rule multiple times