A radical function is a function that contains a radical expression with a variable in the radicand.
The simplest radical function is the square root function:
\$f(x) = \sqrt{x}\$.
Note
The domainof the square root functionis $[0, \infty)$, since the square root of a negative number is not defined in the real numbers.
Placeholder(graph): Graph of the square root function f(x) = sqrt(x)
Note
The transformationsof radical functionsare similarto those of otherfunctions.
Horizontal Shifts
The function \$f(x) = \sqrt{x - h}\$ is the square root function \$f(x) = \sqrt{x}\$ shiftedhorizontally by \$h\$ units:
If \$h > 0\$, the graph is shifted to the right.
If \$h < 0\$, the graph is shifted to the left.
Placeholder(graph): Graph of the function f(x) = sqrt(x - 2), showing a horizontal shift of 2 units to the right
Placeholder(graph): Graph of the function f(x) = sqrt(x) + 3, showing a vertical shift of 3 units up
Placeholder(graph): Graph of the function f(x) = -sqrt(x), showing a reflection across the x-axis
Placeholder(graph): Graph of the function f(x) = 2sqrt(x), showing a vertical stretch by a factor of 2
Placeholder(graph): Graph of the function f(x) = sqrt(2x), showing a horizontal compression by a factor of 2
Placeholder(graph): Graph of the function f(x) = 2sqrt(x - 3) + 1, showing the transformations applied to the parent function f(x) = sqrt(x)
Self review
1. Graphthe function \$f(x) = -\sqrt{x + 2} - 3\$. 2. Graphthe function \$f(x) = \frac{1}{2}\sqrt{x - 1} + 4\$.
End of article
Unlock the rest of this chapter with aFreeaccount
Nice try, unfortunately this paywall isn't as easy to bypass as you think. Want to help devleop the site? Join the team at https://revisiondojo.com/join-us. exercitation voluptate cillum ullamco excepteur sint officia do tempor Lorem irure minim Lorem elit id voluptate reprehenderit voluptate laboris in nostrud qui non Lorem nostrud laborum culpa sit occaecat reprehenderit
Definition
Paywall
(on a website) an arrangement whereby access is restricted to users who have paid to subscribe to the site.
anim nostrud sit dolore minim proident quis fugiat velit et eiusmod nulla quis nulla mollit dolor sunt culpa aliqua
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
Note
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam quis nostrud exercitation.
Excepteur sint occaecat cupidatat non proident
Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit.
Hint
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris.
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum.