\begin{definition}[Rational Expression] A rational expression is a fraction where both the numerator and denominator are polynomials. \end{definition}
\begin{note} The denominator of a rational expression cannot be zero. \end{note}
To add or subtract rational expressions, we need to:
- Find a common denominator.
- Rewrite each expression with the common denominator.
- Add or subtract the numerators.
- Simplify the resulting expression.
Adding Rational Expressions with the Same Denominator
If the rational expressions have the same denominator, we can add or subtract them by combining the numerators.
\begin{example} Example 1:
Simplify $\frac{3x}{x+2} + \frac{2}{x+2}$.
- The denominators are the same: $x+2$.
- Combine the numerators: $3x + 2$.
- The result is $\frac{3x + 2}{x+2}$. \end{example}
Adding Rational Expressions with Different Denominators
If the rational expressions have different denominators, we need to:
- Find the least common denominator (LCD).
- Rewrite each expression with the LCD.
- Combine the numerators.
\begin{example} Example 2:
Simplify $\frac{2}{x} + \frac{3}{x+1}$.
- The denominators are different: $x$ and $x+1$.
- The LCD is $x(x+1)$.
- Rewrite each expression with the LCD:
- $\frac{2}{x} = \frac{2(x+1)}{x(x+1)} = \frac{2x + 2}{x(x+1)}$
- $\frac{3}{x+1} = \frac{3x}{x(x+1)}$
- Combine the numerators: $\frac{2x + 2 + 3x}{x(x+1)} = \frac{5x + 2}{x(x+1)}$. \end{example}
\begin{warning} Be careful when distributing negative signs in subtraction. \end{warning}
\begin{example} Example 3:
Simplify $\frac{3x}{x+2} - \frac{x-2}{x+2}$.
- The denominators are the same: $x+2$.
- Subtract the numerators: $3x - (x - 2) = 3x - x + 2 = 2x + 2$.
- The result is $\frac{2x + 2}{x+2}$. \end{example}
\begin{self_review}
- Simplify $\frac{4}{x} + \frac{3}{x+2}$.
- Simplify $\frac{5x}{x+1} - \frac{2}{x+1}$.
- Simplify $\frac{2}{x+1} + \frac{3}{x+2}$. \end{self_review}