A function of the form \$f(x) = a \cdot b^x\$, where \$a \neq 0\$, \$b > 0\$, and \$b \neq 1\$.
A function of the form \$f(x) = a \cdot \log_b(x)\$, where \$a \neq 0\$, \$b > 0\$, and \$b \neq 1\$.
Exponential and logarithmic functions are inverse of each other. Therefore, they can be used to solve real-world problems that involve exponential growth or decay.
Note
The logarithm is used to solve for the exponent in an exponential equation. This is because the logarithm is the inverse of the exponential function.
Self review
1. A radioactive substance decays exponentially at a rate of 5% per year. If the initial amount is 100 grams, how much will remain after 10 years? 2. A population of bacteria doubles every 3 hours. If there are initially 500 bacteria, how many will there be after 12 hours? 3. A car depreciates in value by 10% each year. If the car is worth \$20,000 today, when will it be worth \$10,000?
Unlock the rest of this chapter with aFreeaccount
Nice try, unfortunately this paywall isn't as easy to bypass as you think. Want to help devleop the site? Join the team at https://revisiondojo.com/join-us. exercitation voluptate cillum ullamco excepteur sint officia do tempor Lorem irure minim Lorem elit id voluptate reprehenderit voluptate laboris in nostrud qui non Lorem nostrud laborum culpa sit occaecat reprehenderit
Definition
Paywall
(on a website) an arrangement whereby access is restricted to users who have paid to subscribe to the site.
anim nostrud sit dolore minim proident quis fugiat velit et eiusmod nulla quis nulla mollit dolor sunt culpa aliqua
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
Note
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam quis nostrud exercitation.
Excepteur sint occaecat cupidatat non proident
Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit.
Tip
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris.
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum.