Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Multiply the complex numbers 5igl(\, ext{cos} frac{ ext{π}}{16}+i ext{sin} frac{ ext{π}}{16}\bigr) and 3igl( ext{cos} frac{3 ext{π}}{16}+i ext{sin} frac{3 ext{π}}{16}\bigr) and express the answer in polar form.
Compute the product 4(cos2π3+isin2π3)×6(cos5π6+isin5π6)4\bigl(\text{cos}\tfrac{2\pi}{3}+i\text{sin}\tfrac{2\pi}{3}\bigr)\times6\bigl(\text{cos}\tfrac{5\pi}{6}+i\text{sin}\tfrac{5\pi}{6}\bigr)4(cos32π+isin32π)×6(cos65π+isin65π) and give the answer in polar form.
Divide 8(cos5π12+isin5π12)8\bigl(\text{cos}\tfrac{5\pi}{12}+i\text{sin}\tfrac{5\pi}{12}\bigr)8(cos125π+isin125π) by 2(cosπ6+isinπ6)2\bigl(\text{cos}\tfrac{\pi}{6}+i\text{sin}\tfrac{\pi}{6}\bigr)2(cos6π+isin6π) and express the result in polar form.
Find the product 7(cos7π8+isin7π8)×2(cos9π8+isin9π8)7\bigl(\text{cos}\tfrac{7\pi}{8}+i\text{sin}\tfrac{7\pi}{8}\bigr)\times2\bigl(\text{cos}\tfrac{9\pi}{8}+i\text{sin}\tfrac{9\pi}{8}\bigr)7(cos87π+isin87π)×2(cos89π+isin89π) in polar form.
Compute the product 5(cosπ5+isinπ5)×5(cos2π5+isin2π5)5\bigl(\text{cos}\tfrac{\pi}{5}+i\text{sin}\tfrac{\pi}{5}\bigr)\times5\bigl(\text{cos}\tfrac{2\pi}{5}+i\text{sin}\tfrac{2\pi}{5}\bigr)5(cos5π+isin5π)×5(cos52π+isin52π) and give the answer in polar form.
Divide 10(cos13π12+isin13π12)10\bigl(\text{cos}\tfrac{13\pi}{12}+i\text{sin}\tfrac{13\pi}{12}\bigr)10(cos1213π+isin1213π) by 5(cos7π12+isin7π12)5\bigl(\text{cos}\tfrac{7\pi}{12}+i\text{sin}\tfrac{7\pi}{12}\bigr)5(cos127π+isin127π) and express the result in polar form.
Express the quotient 8ei3π74ei5π14\frac{8e^{i\frac{3\pi}{7}}}{4e^{i\frac{5\pi}{14}}}4ei145π8ei73π in the form reiθre^{i\theta}reiθ.
Compute 3(cosπ4+isinπ4)×4(cosπ3+isinπ3)2(cosπ6+isinπ6)\frac{3\bigl(\text{cos}\tfrac{\pi}{4}+i\text{sin}\tfrac{\pi}{4}\bigr)\times4\bigl(\text{cos}\tfrac{\pi}{3}+i\text{sin}\tfrac{\pi}{3}\bigr)}{2\bigl(\text{cos}\tfrac{\pi}{6}+i\text{sin}\tfrac{\pi}{6}\bigr)}2(cos6π+isin6π)3(cos4π+isin4π)×4(cos3π+isin3π) and express the answer in polar form.
Express 5eiπ5×2ei3π103eiπ2\frac{5e^{i\frac{\pi}{5}}\times2e^{i\frac{3\pi}{10}}}{3e^{i\frac{\pi}{2}}}3ei2π5ei5π×2ei103π in the form ReiθRe^{i\theta}Reiθ.
Compute (9(cos4π5+isin4π5)3(cos7π10+isin7π10))×2(cosπ10+isinπ10)\biggl(\frac{9\bigl(\text{cos}\tfrac{4\pi}{5}+i\text{sin}\tfrac{4\pi}{5}\bigr)}{3\bigl(\text{cos}\tfrac{7\pi}{10}+i\text{sin}\tfrac{7\pi}{10}\bigr)}\biggr)\times2\bigl(\text{cos}\tfrac{\pi}{10}+i\text{sin}\tfrac{\pi}{10}\bigr)(3(cos107π+isin107π)9(cos54π+isin54π))×2(cos10π+isin10π) in polar form.
Evaluate 12(cos11π12+isin11π12)×5(cosπ3+isinπ3)6(cos5π12+isin5π12)\frac{12\bigl(\text{cos}\tfrac{11\pi}{12}+i\text{sin}\tfrac{11\pi}{12}\bigr)\times5\bigl(\text{cos}\tfrac{\pi}{3}+i\text{sin}\tfrac{\pi}{3}\bigr)}{6\bigl(\text{cos}\tfrac{5\pi}{12}+i\text{sin}\tfrac{5\pi}{12}\bigr)}6(cos125π+isin125π)12(cos1211π+isin1211π)×5(cos3π+isin3π) and express the answer in polar form.
Find the product of three complex numbers in polar form: 2(cosπ8+isinπ8)×3(cosπ4+isinπ4)×5(cosπ16+isinπ16).2\bigl(\text{cos}\tfrac{\pi}{8}+i\text{sin}\tfrac{\pi}{8}\bigr)\times3\bigl(\text{cos}\tfrac{\pi}{4}+i\text{sin}\tfrac{\pi}{4}\bigr)\times5\bigl(\text{cos}\tfrac{\pi}{16}+i\text{sin}\tfrac{\pi}{16}\bigr).2(cos8π+isin8π)×3(cos4π+isin4π)×5(cos16π+isin16π).
Previous
Question Type 4: Applying multiplication and division to complex numbers in Euler form
Next
Question Type 6: Applying powers to complex numbers in Euler form