Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Calculate the area of a sector with radius r=5 cmr=5 \text{ cm}r=5 cm and central angle θ=60o \theta=60^ \text{o}θ=60o.
Find the radius of a sector when its area is 18 cm218\text{ cm}^218 cm2 and θ=π2 rad\theta=\tfrac{\pi}{2}\text{ rad}θ=2π rad.
A sector has radius r=3 cmr=3 \text{ cm}r=3 cm and area 30π cm230\pi\text{ cm}^230π cm2. Find its central angle θ\thetaθ in degrees.
Find the area of a sector if r=8 mr=8 \text{ m}r=8 m and θ=150o \theta=150^ \text{o}θ=150o.
Given a sector area of 50 cm250 \text{ cm}^250 cm2 and central angle θ=90o \theta=90^ \text{o}θ=90o, find the radius rrr.
A sector with radius r=6 cmr=6\text{ cm}r=6 cm has area 4π cm24\pi\text{ cm}^24π cm2. Find the central angle θ\thetaθ in radians.
The area of a sector is 22π m222\pi\text{ m}^222π m2 when θ=90o\theta=90^\text{o}θ=90o. Find the radius rrr.
A sector has radius r=7 mr=7\text{ m}r=7 m and area xπ m2x\pi\text{ m}^2xπ m2. Express the central angle θ\thetaθ in radians.
Given a sector with radius 5x cm5x\text{ cm}5x cm and central angle π3 rad\tfrac{\pi}{3}\text{ rad}3π rad has area 25πx26 cm2\dfrac{25\pi x^2}{6}\text{ cm}^2625πx2 cm2. Verify this area.
A sector has radius r=10 cmr=10\text{ cm}r=10 cm and central angle 2x2x2x degrees. If its area is 100 cm2100\text{ cm}^2100 cm2, find xxx.
The area of a sector is 12 m212\text{ m}^212 m2, its radius is 4x m4x\text{ m}4x m and its central angle is 3x rad3x\text{ rad}3x rad. Find xxx.
Given a sector area of 16π3 m2\tfrac{16\pi}{3}\text{ m}^2316π m2, radius r=2x+1 mr=2x+1\text{ m}r=2x+1 m and angle θ=(x+2)π6 rad\theta=\tfrac{(x+2)\pi}{6}\text{ rad}θ=6(x+2)π rad, find xxx.
Previous
Question Type 2: Calculating the arc length given some parameters
Next
No next topic