Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Given y′=5x2+3y' = 5x^2 + 3y′=5x2+3 and y(0)=1y(0)=1y(0)=1, find y(x)y(x)y(x).
Determine y(x)y(x)y(x) if y′=9x4+8xy' = 9x^4 + 8xy′=9x4+8x and y(0)=7y(0)=7y(0)=7.
If y′=5x3−4x2+7x−2y' = 5x^3 - 4x^2 + 7x - 2y′=5x3−4x2+7x−2 and y(0)=5y(0)=5y(0)=5, determine y(x)y(x)y(x).
Given y′=3x2+2x+1y' = 3x^2 + 2x + 1y′=3x2+2x+1 with y(2)=20y(2)=20y(2)=20, find the function y(x)y(x)y(x).
Determine y(x)y(x)y(x) if y′=2x3+5x2−x+4y' = 2x^3 + 5x^2 - x +4y′=2x3+5x2−x+4 and y(1)=3y(1)=3y(1)=3.
Find the function y(x)y(x)y(x) if y′=−5x3+x−1y' = -5x^3 + x - 1y′=−5x3+x−1 and y(1)=−2y(1)=-2y(1)=−2.
Given y′=8x4+2x3+11x+3y' = 8x^4 + 2x^3 + 11x + 3y′=8x4+2x3+11x+3 and the condition y(1)=9y(1)=9y(1)=9, find y(x)y(x)y(x).
Find y(x)y(x)y(x) given y′=7x2−3x+2y' = 7x^2 - 3x + 2y′=7x2−3x+2 and the condition y(3)=50y(3)=50y(3)=50.
If y′=4x4−x3+6xy' = 4x^4 - x^3 + 6xy′=4x4−x3+6x and y(−1)=0y(-1)=0y(−1)=0, determine y(x)y(x)y(x).
Find y(x)y(x)y(x) if y′=6x5+x2−3y' = 6x^5 + x^2 - 3y′=6x5+x2−3 and y(1)=10y(1)=10y(1)=10.
If y′=x5−2x3+xy' = x^5 - 2x^3 + xy′=x5−2x3+x and y(2)=15y(2)=15y(2)=15, determine y(x)y(x)y(x).
If y′=2x6−x4+4x2−2y' = 2x^6 - x^4 + 4x^2 -2y′=2x6−x4+4x2−2 and y(−2)=5y(-2)=5y(−2)=5, determine y(x)y(x)y(x).
Previous
Question Type 1: Integrating a polynomial without boundary conditions
Next
Question Type 3: Calculating the area between a polynomial in the positive section and the x axis