Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Write the vector equation of the line through C(0,5,−2)C(0,5,-2)C(0,5,−2) and D(−4,1,−6)D(-4,1,-6)D(−4,1,−6).
Find the vector equation of the line passing through the points P(1,4,3)P(1,4,3)P(1,4,3) and Q(−1,2,1)Q(-1,2,1)Q(−1,2,1).
Rewrite the line r⃗=(0,1,6)+k(4,2,1)\vec{r}=(0,1,6)+k(4,2,1)r=(0,1,6)+k(4,2,1) in parametric form.
Verify whether the point M(2,1,3)M(2,1,3)M(2,1,3) lies on the line given by x−52=y−13=z1 .\frac{x-5}{2}=\frac{y-1}{3}=\frac{z}{1}\,. 2x−5=3y−1=1z.
Determine the vector equation of the line through A(2,−1,0)A(2,-1,0)A(2,−1,0) and B(5,2,3)B(5,2,3)B(5,2,3).
Convert the line x−31=y+2−2=z−54\frac{x-3}{1}=\frac{y+2}{-2}=\frac{z-5}{4}1x−3=−2y+2=4z−5 into vector form.
Check if the point (4,−2,5)(4,-2,5)(4,−2,5) lies on the line r⃗=(1,0,2)+t(3,−1,1) .\vec{r}=(1,0,2)+t(3,-1,1)\,. r=(1,0,2)+t(3,−1,1).
Find the vector equation of the line joining E(3,0,1)E(3,0,1)E(3,0,1) to F(−1,4,−2)F(-1,4,-2)F(−1,4,−2).
Determine if N(7,4,1)N(7,4,1)N(7,4,1) lies on the line x+14=y−2−1=z−32 .\frac{x+1}{4}=\frac{y-2}{-1}=\frac{z-3}{2}\,. 4x+1=−1y−2=2z−3.
Express the line r⃗=(2,−1,3)+s(−5,4,2)\vec{r}=(2,-1,3)+s(-5,4,2)r=(2,−1,3)+s(−5,4,2) in symmetric form.
Verify whether (0,3,4)(0,3,4)(0,3,4) lies on the line through (2,1,2)(2,1,2)(2,1,2) in direction (−2,2,3)( -2,2,3)(−2,2,3).
Rewrite the symmetric line x2=y−33=z+1−1\frac{x}{2}=\frac{y-3}{3}=\frac{z+1}{-1}2x=3y−3=−1z+1 in parametric form.
Previous
No previous topic
Next
Question Type 2: Verifying if a point lies on a specific line